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ABSTRACT
The item fairness issue has become one of the significant concerns
with the development of recommender systems in recent years,
focusing on whether items’ exposures are consistent with their
utilities. So the measurement of item unfairness depends on the
modeling of item utility, and most previous approaches estimated
item utility simply based on user-item interaction logs in recom-
mender systems. The Click-through rate (CTR) is the most popular
one. However, we argue that these types of item utilities (named
observed utility here) measurements may result in unfair exposures
of items. The number of exposure for each item is uneven, and
recommendation methods select the exposure audiences (users).

In this work, we propose the concept of items’ fair utility, defined
as the proportion of users who are interested in the item among all
users. Firstly, we conduct a large-scale random exposure experiment
to collect the fair utility in a real-world recommender application.
Significant differences are observed between the fair utility and
the widely used observed utility (CTR). Then, intending to obtain
fair utility at a low cost, we propose an exploratory task for real-
time estimations of fair utility with handy historical interaction
logs. Encouraging results are achieved, validating the feasibility of
fair utility projections. Furthermore, we present a fairness-aware
re-distribution framework and conduct abundant simulation ex-
periments, adopting fair utility to improve fairness and overall
recommendation performance at the same time. Online and offline
results show that both item fairness and recommendation quality
can be improved simultaneously by introducing item fair utility.
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1 INTRODUCTION
Recommender systems have become one of the main approaches
for people to acquire information, which utilize the historical in-
teractions between users and items to model user preferences and
item representations. In recent years, researchers have found that
the exposure and training process of recommender systems suffers
from a critical issue, unfairness, for both users and items [14, 27].

Many efforts have been conducted on user unfairness [8, 10, 18,
18, 43], while relatively fewer studies focus on item fairness issues.
Existing item fairness studies proposed that the exposure of each
item should be positively correlated to its utility to achieve item
fairness [7, 25]. The set of widely used item utility measurements is
based on historical interaction logs, e.g., click-through rate (CTR),
which we name observed utility in this paper. However, these
studies ignore a large amount of unevenly distributed missing in-
teractions in the user-item space. For example, suppose there are
two items, A and B. In history, item A got more exposure data for
training, resulting in better performance. So a higher utility can
be observed for item A based on historical logs (see Figure 1(a)).
However, if two items are exposed to all users, item B will have
higher utility than item A (see Figure 1(b)). We argue that the utility
calculated based on all users reflects the actual item utility, and
therefore the observed utility is inaccurate. Hence, optimizing item
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Figure 1: Observed Utility based on partial information vs.
Fair Utility based on full information. We cannot obtain the
fair utility directly from historical logs, since many interac-
tions are missing, i.e, the white area in (a).

fairness based on observed item utilities is unfair in the first place.
Motivated by the above observations, we propose to model items’

fair utility, which is defined as the proportion of users who are
interested in the item among all users. We believe that an ideal rec-
ommender system should give exposures based on this fair utility,
i.e., giving item exposure to and only to the users who prefer it.
This will achieve both optimal fairness and system performance.

However, it is challenging to estimate the fair utility since it is
impossible to show an item to all users and collect their preferences.
In terms of probability, we can expose an item to users randomly
to approximate its fair utility since the probability of a randomly
selected user liking the item is the same as the proportion of the
item’s candidate users among all users. However, it is costly and
raises the concern of hurting the user experience to conduct random
exposure experiments. Therefore, it is valuable to estimate such
fair utility based on the historically observed utility sequences.

In this paper, we aim to answer the following research questions:
(RQ1) Is the fair utility consistent with observed utility measure-

ments used in previous works?
(RQ2) Is the item fair utility predictable based on the historical

sequence of observed utility?
(RQ3) Is the fair utility helpful to improve the item fairness of

recommender systems, as well as the overall system perfor-
mance?

For the first research question, we clarify the definition of item
observed utility and fair utility. Then, we conduct a large-scale
randomized experiment to estimate the fair utility in a real-world
mobile application for short video recommendations.We investigate
the differences between the fair utility obtained from the random
experiment and the observed utility from the online system. For
the second research question, we model the historically observed
utility in a sequence to predict the fair utility. For the third question,
we propose a fairness-aware framework that re-distributes system
exposures with fair utility for online and offline scenarios. We
conduct abundant simulation experiments based on this framework
to assess the impact on recommended performance and system
fairness.

To summarize, our main contributions are as follows:
(1) To the best of our knowledge, this is the first work to investigate

the potential inaccuracy of previous item utility modelings. We
refine the utility-based fairness measurements with the item
fair utility.

(2) A large-scale random experiment is conducted to estimate item
fair utility in an online system and will be released publicly.
For low-cost estimations of the fair utility, we experiment with
handy observed utility sequences to predict the fair utility and
achieve encouraging results.

(3) We present a fairness-aware re-distribution framework with the
proposed fair utility. Simulation experiments demonstrate its
ability to achieve both item fairness and recommendation per-
formance improvements, which also show that the two metrics
are not in conflict but can be improved simultaneously.

2 RELATEDWORK
In general, fairness issues are often associated with biases in recom-
mender systems. There are two main purposes for works related to
bias and fairness: de-bias for improving recommendation quality
or removing biases for fairness concerns. Therefore, we include
two subsections of related work, the Bias and De-biasing aiming at
improving recommendation quality, and the Fairness for reducing
unfairness in the recommender system.

2.1 Fairness
As recommender systems play an essential role in our lives, it is
critical to study and mitigate the unfairness issues involved. Burke
[4] classifies fairness in recommender systems as Consumer Fair-
ness (also called User Fairness [18, 20–22, 39]) and Provider Fairness
(related to item fairness [2, 11, 13]) based on subjects. There are
also works focused on both sides [30], and the integrated fairness
between users and items is referred to as Market Fairness [34] or
Two-sided Fairness[27, 40].

From the granularity aspect, the definitions of fairness in recom-
mender systems are usually categorized into individual fairness [9]
and group fairness [28, 29, 33] (divided based on sensitive attributes
such as user gender, user age, item category, etc. [10, 14, 15, 43, 46]).
Both require similar individuals/groups should be treated simi-
larly [9, 28]. The utility measures similarities of quality and treat-
ments are quantified by resources received. For the item side, utili-
ties are mainly measured by CTR or 1 (pursuing equality among all
subjects [47]),and resources contain predicted scores„[14], errors of
predicted scores[43] and exposures[34]. Accordingly, the unfairness
degree is valued as the disparity of utility-normalized resources.

To overcome the problem of unfairness, previous works proposed
solutions in various directions: (1) data-based optimization [10, 30],
which attempts to modify the distribution of training data to reduce
unfairness; (2) model-based optimization, which adjusts the loss
function [2, 5, 14, 15, 34, 43] or model structures [46] to improve
fairness; (3) outcome-based optimization [12, 16, 27, 32], which re-
ranks the original unfair results to conduct fair recommendation.
Counterfactual methods are also often used as one of the technical
tools [24, 26, 38].

Ourwork investigates item fairness among groups categorized by
content, using CTR as utility metrics and the number of exposures
as resources for items. Unlike previous studies that ignored the
gap between the utility obtained from system logs and the actual
utility in the whole user space, we refine the measurement of item
utility with the Fair Utility. Besides, we propose a fairness-aware
re-distribution framework and replace the inaccurate observed
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utility in fairness-aware methods with our predicted and randomly
collected actual fair utility to achieve more precise improvements.

2.2 Relationship with Bias and De-biasing
The observed utilities of items, e.g., CTR, are inaccurate as they
may be influenced by exposure/popularity biases or the recommen-
dation methods. Although our study aims to improve item fairness,
we want to make clear the differences between our work and these
studies.

Based on whether overall unbiased can be achieved, we separate
de-biasing works into two types: global strategies, which auto-
matically avoid biases with the calibration of costly and limited
experimental uniform data and non-global methods, which focus
on specific kinds of known biases [6, 23]. Exposure and Popularity
biases are two major known biases related to our fair utility esti-
mation scenario. The former happens as users are only exposed
to a part of specific items [31, 37, 41] and the latter refers to the
over-recommendation of popular items [44, 45].

In this paper, we focus on item fairness. This purpose is fun-
damentally different from major de-biasing works, which pursue
higher recommendations accuracy and lack fairness considerations.
The experiment data we utilized is also different in settings. Instead
of exposing randomly in the limited user-item space, we use the
feedback of each item randomly exposed to all users in the whole
system. The experiment data is very sparse on the user-side, adding
negligible impact on each user’s experience, and is not suitable
for global two-sided de-biasing methods. We also use the latest
de-biasing method for popularity bias during training in our exper-
iments. The results indicate that mitigating popularity bias does
not necessarily guarantee item fairness improvements.

3 PROBLEM FORMULATION
This section describes the concepts used in this work, including
item fairness, observed utility, and fair utility.

3.1 Item Fairness
We follow previous studies [3, 25] that use utility-based fairness
as the metric of item fairness, which means each group of items
gets resources proportional to its utility. Besides, this metric is also
called merit-based fairness[42] or quality-weighted fairness[40].

Formally, we define item fairness problems on groups of items
𝐺 = {𝐺1,𝐺2, ...}, with the goal that resources received by each
group, 𝑅(𝐺) = {𝑅(𝐺1), 𝑅(𝐺2), ...}, need to be positively correlated
with the their utility 𝑈 (𝐺) = {𝑈 (𝐺1),𝑈 (𝐺2), ...}. For group 𝐺𝑥 =

{𝑖𝑥1, 𝑖𝑥2, ...}, we calculate the resource and utility based on the
average behavior of items in 𝐺𝑚 :

𝑅(𝐺𝑥 ) =
∑
𝑖∈𝐺𝑥

𝑅(𝑖)
|𝐺𝑥 |

𝑈 (𝐺𝑥 ) =
∑
𝑖∈𝐺𝑥

𝑈 (𝑖)
|𝐺𝑥 |

(1)

For system-level unfairness evaluation among multi-groups, we
use the Herfindahl-Hirschman Index (HHI), a standard measure of
market concentration [1] to measure group-level disparities. Note
that HHI is a normalized factor in the range of 1/|G| to 1, and lower
HHI means fairer performances.

𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (𝐺) = 𝐻𝐻𝐼 ( 𝑅(𝐺)
𝑈 (𝐺) ) =

∑
𝐺𝑖 ∈𝐺

( 𝑅(𝐺𝑖 )/𝑈 (𝐺𝑖 )∑
𝐺 𝑗 ∈𝐺 𝑅(𝐺 𝑗 )/𝑈 (𝐺 𝑗 )

)2

(2)

As mentioned, fairness is closely dependent on utility (eq2), and
we argue that utilities derived from historical interaction data are in-
consistent with the situation in the whole user-item space. The num-
ber of exposure for each item is uneven, and recommendation meth-
ods select the exposure audiences (users). When utility is inaccurate,
fairness measurement and optimization could be misleading. There-
fore, we discuss the definition of utility in the following subsection.

3.2 Observed Utility and Fair Utility
In this work, we view the recommendation process from the item
side. Given an item 𝑖 , and the complete set of users𝑈 , the system
predicts users’ preference on 𝑖 , and recommends it to the proper
users (𝑈𝑜𝑏𝑠 ). The interaction feedback from these users is collected
(𝐹𝑜𝑏𝑠 ) (e.g., click, like, comment rate, etc.) and is used to measure the
item’s utility. The utility obtained by directly measuring observed
historical data is called observed utility (OU):

OU(𝑖) = 1∑
𝑢∈𝑈 I

[
𝑓𝑢,𝑖 ∈ 𝐹𝑜𝑏𝑠

] ∑
𝑢∈𝑈
I
[
𝑓𝑢,𝑖 ∈ 𝐹𝑜𝑏𝑠

]
𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓𝑢,𝑖 ) (3)

where I indicates the indicative function and 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 refers to the
defined individual utility metric based on the single feedback, such
as CTR.

However, the observed feedback 𝐹𝑜𝑏𝑠 cannot reflect the actual
item utility as there are usually a large number of missing interac-
tions compared with complete information. Moreover, these miss-
ing values are not uniformly random sampled but determined by
the previous recommender system. Therefore, the observed utility
may not reflect the actual utility.

The ideal and fair measurement of the item utility can be de-
fined as the number (ratio) of the users who like the item if we
recommend it to all users. We name it as the fair utility (FU). The
difference between the observed utility and the fair utility comes
from the difference between observed feedback 𝐹𝑜𝑏𝑠 and the ideal
full feedback 𝐹 .

FU(𝑖) = 1
|𝑈 |

∑
𝑢∈𝑈

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓𝑢,𝑖 )

=
1∑

𝑢∈𝑈 I
[
𝑓𝑢,𝑖 ∈ 𝐹

] ∑
𝑢∈𝑈
I
[
𝑓𝑢,𝑖 ∈ 𝐹

]
𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓𝑢,𝑖 )

(4)

Accurate, fair utility of all items will lead to a fair recommenda-
tion system. While, it depends on full information, which is difficult
to obtain in real-world systems.

The following section will introduce the dataset and compare
fair utility and observed utility.

4 EMPIRICAL ANALYSIS OF ITEM UTILITY
4.1 Datasets
We need a large dataset containing abundant random exposures to
calculate the fair utility. Existing public datasets either only record
system exposure results (Amazon, MovieLens) or are limited in
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Table 1: Statistics of the Kwai_Fair dataset.
Kwai_Fair Items Users Interactions

System (𝑅𝑜𝑏𝑠 ) 12,579 5,698,826 7,826,461
Experiment (𝑅𝑟𝑎𝑛𝑑 ) 12,749 10,623,645 12,272,143

Figure 2: The severely skew distribution of system exposure
among items. Long-tailed items receive few resources.

random data size (Yahoo!R3, Coat). So we decide to collect a new
dataset for fair utility measurement and counterfactual experiments,
namelyKwai_FAIR 1. This dataset, with impressive size (Table 1) and
latest information, has high value for related research and will be
publicly released along with this paper. It is composed of two parts:
regular system interaction logs 𝑅𝑜𝑏𝑠 and stochastic experiment logs
𝑅𝑟𝑎𝑛𝑑 of the same group of items, derived from real users of a com-
mercial short video recommendation application on mobile. Each
record 𝑟 = (𝑢, 𝑖, 𝑓 , 𝑡) contains the user id, item id, feedback (click,
like, comment, watch duration, etc.), and interaction timestamp.

Due to space limitations, detailed information on this Kwai_Fair,
including the control of confounding factors in data collection, and
more statistics of 𝑅𝑜𝑏𝑠 , 𝑅𝑟𝑎𝑛𝑑 are introduced in the appendixA.

To prevent data leakage, we divide items into two groups ac-
cording to their upload dates. Items uploaded in the first two days
construct 𝐼0, and the corresponding data 𝑅𝑜𝑏𝑠,𝐼0 = {𝑟 |𝑟 .𝑖 ∈ 𝐼0},
𝑅𝑟𝑎𝑛𝑑,𝐼0 = {𝑟 |𝑟 .𝑖 ∈ 𝐼0} is used for the following analysis and train-
ing for fair utility estimations. Items uploaded on the third (last)
day form 𝐼1. 𝑅𝑜𝑏𝑠,𝐼1 and 𝑅𝑟𝑎𝑛𝑑,𝐼1 are saved for testing in section 5
and online simulation experiments in section 7.

4.2 Observed Utility vs. Fair Utility (RQ1)
Based on the collected data, we first inspect the exposure distri-
bution of these items, as shown in Figure 2. We can observe that
the exposure is significantly skewed. Few items receive most of
the recommendation opportunities, while many tail items have
barely been exposed. Such a phenomenon indicates concerns on
item fairness. What is the distribution of item utility?

We then calculate the observed utility and the fair utility. The
original system interaction logs measure the observed utility, and
experiment data measure the fair utility. The utility of the item is
calculated as the click-through rate. The utility distribution shows
a different pattern compared to the exposure distribution (shown in
Figure 3). High-exposed items do not always have high utility, same
as low-exposed items. This confirms the issue of the system’s unfair-
ness and optimization space, which is to give opportunities to under-
exposed items. Then, does the observed utility match the fair utility?

1The dataset and codes can be found at https://github.com/Alice1998/MakeFairnessMoreFair.

Figure 3: Distribution of Observed utility and Fair utility
of items (in terms of Click-Through-Rate). The items are
ranked and grouped by the exposure times in the real sys-
tem in descending order. Exposure is not always aligned
with items click utility.

Exposure Time

Utility

Inspect window:
Exposure: 10
Click: 3 …

Fair Utility
Observed Utility

Figure 4: An illustration of fair Utility Estimation:We try to
predict the fair utility of the item based on the sequence of
observed utility.

We further conduct a comparative analysis and observe signifi-
cant discrepancies and correlations between the observed and fair
utility. Items with higher click probability in system logs are more
likely to have a higher random click probability. The correlation
between them is confirmed by Pearson’s correlation 𝑟 = 0.280. This
correlation gives us the insights to estimate the fair utility, which
is hard to collect, with the observed utility.

5 EXPLORATORY ESTIMATION OF FAIR
UTILITY (RQ2)

The fair utility is necessary for accurate measurements of system
fairness. Unluckily, it is impossible to collect it directly in real sce-
narios because of the high cost of conducting randomized exposure
experiments. As shown in the above section, there exists a corre-
lation between the observed utility and fair utility. Therefore, we
ask the question: Is the item fair utility predictable based on the
historical sequence of observed utility?

5.1 Fair Utility Estimation Task
To start with, we define the fair utility estimation task. Formally,
given the sequence of historical observed utility ®𝑂𝑈𝑖 of an item 𝑖 ,
we try to estimate its fair utility 𝐹𝑈𝑖

ˆ𝐹𝑈𝑖 = 𝑓 ( [𝑂𝑈𝑖,1,𝑂𝑈𝑖,2, ...,𝑂𝑈𝑖,𝑖 .𝑇 ]) (5)

Where 𝑓 indicates models for estimation, 𝑂𝑈𝑖,𝑡 is observed utility
of item 𝑖 at time 𝑡 , and 𝑖 .𝑇 is the length of historical observed utility.
With the estimation of fair utility ˆ𝐹𝑈𝑖 , we can portray the utility
more accurately, which is fundamental for promoting fairness.

 

1871



Make Fairness More Fair: Fair Item Utility Estimation and Exposure Re-Distribution KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 2: The results of fair utility estimation task. TheGRUmodel, which considers the historical observed utility as a sequence
performs the best in this task.

Models
(W,S) (10, 10) (20, 5) (50, 2)

RMSE MAE PCC RMSE MAE PCC RMSE MAE PCC

LR 0.0901 0.0718 -0.1117 0.0902 0.0721 -0.1161 0.0903 0.0723 -0.1233
GBDT 0.0891 0.0694 0.2627 0.0801 0.0649 0.4892 0.0798 0.0649 0.5008

GRU 0.0684 0.0553 0.6414 0.0696 0.057 0.6468 0.0701 0.0556 0.6085
(+23.2%) (+20.3%) (+144%) (+13.1%) (+12.2%) (+32.2%) (+12.2%) (+14.3%) (+21.5%)

5.2 Methods and Features
We treat this exploratory problem of fair utility estimation as a
regression problem, using non-sequential and sequential models
for prediction. As our main goal is to verify that the fair utility
can be predicted based on the sequence pattern of historically ob-
served utility, but not to propose new models, we use three types
of classical regression models for this task:

(1) Basic model: linear regression (LR)
(2) Ensemblemodel: Gradient Boosting Decision Tree (GBDT)
(3) Sequential model: Gate Recurrent Unit (GRU)
In the sequential model, CTR series are used as input directly.

For the basic model and ensemble model, features are concatenated
as input. To better understand sequential patterns, we also test 3
different settings for sliding windows, which are listed in Table 2.

5.3 Dataset and Metrics
The task uses both the system and the experiment subsets in XXX_Fair.
In the experiment, feedback of items uploaded in the first 2 days
(𝑅𝑜𝑏𝑠,𝐼0 , 𝑅𝑟𝑎𝑛𝑑,𝐼0 ) is used for training and information of the sepa-
rated items (𝑅𝑜𝑏𝑠,𝐼1 , 𝑅𝑟𝑎𝑛𝑑,𝐼1 ) composes the test set.

𝐹𝑜𝑏𝑠 = {𝑟 .𝑓 | 𝑟 ∈ 𝑅𝑜𝑏𝑠 } =
𝐼⋃
𝑖

{𝑓𝑖,1, 𝑓𝑖,2 ..., 𝑓𝑖,𝑖 .𝑇 }

𝑂𝑈𝑖,𝑡 = 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓𝑖,𝑡 ) = 𝑓𝑖,𝑡 .𝐶𝑇𝑅
We consider the mean CTR in 𝐹𝑟𝑎𝑛𝑑 for each item as the fair utility
𝐹𝑈 , which is the target of our estimation. And the sequences of
CTR in 𝐹𝑜𝑏𝑠 are valued as the observed utility ®𝑂𝑈 , which are our
inputs. Specifically, given the pre-defined window size𝑊 , and step
size 𝑆 , the feedback series are grouped with a sliding window. For
each input window 𝐼𝑊𝑖,𝑥 , current CTR and cumulative CTR till this
window are considered as two input features. The input window
sequences at the length of 𝑆 compose the final inputs for item i.

𝐼𝑊𝑖,𝑥 = (
∑𝑊 ∗(𝑥+1)−1
𝑡=𝑊 ∗𝑥 𝑂𝑈𝑖,𝑡

𝑊
,

∑𝑊 ∗(𝑥+1)−1
𝑡=0 𝑂𝑈𝑖,𝑡

𝑊 ∗ (𝑥 + 1) )

𝐼𝑛𝑝𝑢𝑡𝑖,𝑥 = [𝐼𝑊𝑖,𝑥 , 𝐼𝑊𝑖,𝑥+1, ..., 𝐼𝑊𝑖,𝑥+𝑆−1]
MSE is used as the loss, and MAE, PCC (Pearson Correlation

Coefficient) are used as evaluation metrics.

5.4 Estimation Results
The overall fair utility estimation results are shown in Table 2. The
well-performing results conclude that fair utility (𝐹𝑈 ) can be esti-
mated with the observed utility (𝑂𝑈 ) series. The sequential model,
GRU, which considers changes in the observed utility, performs
the best in all metrics and experimental settings, and there is a

considerable improvement to non-sequential ones. This result con-
firms that the sequence pattern of the historically observed utility
helps reflect the fair utility. Moreover, the ensemble method GBDT
performs better than LR, which indicates that complex non-linear
relationships between 𝑂𝑈 and 𝐹𝑈 may exist.

As for the three aggregation settings, their inputs are all based
on 100 observed utility feedback and the sliding window size are
set as 10, 20, and 50, respectively. The test results show that the
central setting (with the window size of 20) works the best. On the
one hand, adequate records in every window guarantee stability.
On the other hand, sliding windows with too large sizes may lose
fine-grained information in the changes of observed utility, which
leads to a decline in performance. Therefore, we use the 20 group-5
step setting for counterfactual simulation in the following sections.

6 FAIR-AWARE RE-DISTRIBUTION
FRAMEWORK (RQ3)

Based on the analysis in Section 4, we find the misordering of
item utility and exposure number in the recommender system.
This discovery stimulates the win-win possibility for both fairness
and system overall recommendation quality (measured by hit rate,
CTR, etc.). Accordingly, we design a fairness-aware framework to
give the opportunities from over-exposed groups to under-exposed
good-quality groups in the re-distribution process.

6.1 Exposure Re-distribution Task
Unlike the re-ranking task that aims to optimize the recommenda-
tion results for single users, the target of the exposure re-distribution
task is to optimize system-level item fairness and recommendation
performance by reordering items.

We first define the re-distribution task as follow: In recommen-
dation systems, original personalized strategies 𝑺𝒐𝒓 𝒊,𝒇 give cus-
tomized item exposure lists based on user requests. A re-distribution
algorithm will use re-ordering strategies 𝑺𝒓𝒆,𝒈 to reconstruct
item exposure sequences 𝑅𝑜𝑟𝑖,𝑓 = [𝑟0, 𝑟1, 𝑟2 ...𝑟 |𝑅 |−1] generated by
𝑆𝑜𝑟𝑖,𝑓 to 𝑅𝑟𝑒,𝑔 = [𝑟𝑔,0, 𝑟𝑔,1 ...𝑟𝑔, |𝑅 |−1] for optimizations in item fair-
ness with minimized system quality loss. The main challenge is
how to design a good re-distribution method 𝑺𝒓𝒆,𝒈 .

In this study, to tackle item unfairness issues, this task re-ranks
exposure sequences in group level (divided by item content tag)
dynamically based on the information at each current state.

6.2 Re-distribution Strategies
To address the exposure re-distribution task, we further refine our
Fairness-aware Re-distribution Framework with trade-off strate-
gies 𝑆𝑟𝑒,𝑔 on item quality and unfairness scores. This framework is
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designed based on the last ranking stage in real-world online recom-
mendation systems, offering solid possibilities for future migration
in online scenarios and offline algorithms.

6.2.1 Group-level quality and fairness score.
As our motivation is to mitigate unfairness with minimal negative
or even positive impact on recommendation quality, we need to
evaluate the status of 𝑅𝑟𝑒,𝑔 dynamically in both recommendation
quality and fairness sides. The quality is measured by click-through
rate, and the unfairness is represented by an under-exposure degree.
For group 𝐺 at time 𝑡 ,

𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦,𝐺 (𝑡) =
𝐶𝑙𝑖𝑐𝑘𝐺 (𝑡)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐺 (𝑡)
(6)

𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,𝐺 (𝑡) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐺 (𝑡)
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐺 (𝑡)

(7)

The 𝐶𝑙𝑖𝑐𝑘𝐺 (𝑡), 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐺 (𝑡), and 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐺 (𝑡) are all sum of item-
level situations in the group until time 𝑡 , e.g., 𝐶𝑙𝑖𝑐𝑘𝐺 (𝑡) =

∑
𝑖∈𝐺∑

𝑡𝑥 ≤𝑡 𝑐𝑙𝑖𝑐𝑘𝑖,𝑡𝑥 . Among them, the𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐺 (𝑡) used in 𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,𝐺
is a major concern for us.We used the observed utility and predicted
fair utility in Section 7 to further validate our estimation models,
and used the true fair utility in Section 8 for examination of the
regulatory capacities of our fairness-aware framework on different
recommendation algorithms 𝑆𝑜𝑟𝑖,𝑓 .

6.2.2 Two-dimensional Modulation.
To give exposure opportunities to high-quality low-exposure groups,
we propose threemethods to balance between 𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦 and 𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠
in the re-distribution experiments. They are listed below:

(1) Linear: select the group based on a linear combination of
two scores:

𝐺𝑡 = argmax
𝑔∈𝐺

(𝛼 ∗ 𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦,𝑔 (𝑡) + (1 − 𝛼) ∗ 𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,𝑔 (𝑡)) (8)

(2) Quality-ensured: select the most unfairly treated group in
the good-quality candidates

𝐺𝑡 = argmax
𝑔∈𝐺

(𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,𝑔 (𝑡) ∗ I[𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦,𝑔 (𝑡) > 𝛽 ∗ 𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (𝑡)])

(9)
(3) Fairness-ensured: select the best-quality group in the un-

fairly treated candidates

𝐺𝑡 = argmax
𝑔∈𝐺

(𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦,𝑔 (𝑡)∗I[𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,𝑔 (𝑡) > 𝛾∗𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (𝑡)])

(10)
Where 𝛼 , 𝛽 , and 𝛾 are hyper-parameters. The framework for our

simulation is described in Algorithm 1. To initialize the algorithm,
we calculate 𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦,0 and 𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,0 with the first K exposures
in the original system (Named as Intervention Time). And we only
consider the first 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 number of exposures. The 𝑆𝑐𝑜𝑟𝑒𝑔 (𝑅𝑟𝑒,𝑔)
denotes the score calculated in equation 8, 9, or 10.

6.3 Evaluation Metrics
Since the goal of our exposure re-distribution framework is to
optimize fairness with recommendation quality at the same time,
we evaluate the re-exposed sequence 𝑅𝑟𝑒,𝑔 with both system quality
and fairness situations.

Algorithm 1 Fairness-aware Re-distribution
Input: Original exposure sequence 𝑅, Re-distribution Strategy

𝑆𝑟𝑒,𝑔 , Group-level Utility (Observed Utility, Fair Utility Pre-
diction Model, true Fair Utility), Intervention Time 𝐾 , Maximal
Required Exposure Times.

Output: re-distributed exposure sequence 𝑅𝑟𝑒,𝑔 under 𝑆𝑟𝑒,𝑔
1: initiate 𝑡 = 𝐾, 𝑅𝑟𝑒,𝑔 = 𝑅 [𝑅.𝑡 ≤ 𝐾]
2: initiate item-level utility and aggregate group-level 𝑈𝑡𝑖𝑙𝑖𝑡𝑦
3: initiate group-level 𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦,0 = 𝐶𝑙𝑖𝑐𝑘 (𝐾)/𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝐾)
4: initiate group-level 𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,0 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝐾)/𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝐾)
5: while ( |𝑅𝑟𝑒,𝑔 | < 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑) do
6: 𝑡 ← 𝑡 + 1.
7: select group G⊔ = argmax(𝑆𝑐𝑜𝑟𝑒𝑔 (𝑅𝑟𝑒,𝑔)).
8: select 𝑖𝑡𝑒𝑚𝑖 ∈ G⊔ with the highest relevance score (minimal

exposure time) in 𝑅 − 𝑅𝑟𝑒,𝑔 , and get the corresponding record
𝑟𝑔 (𝑡 ) .

9: update re-distributed sequence 𝑅𝑟𝑒,𝑔 = 𝑅𝑟𝑒,𝑔 + [𝑟𝑔 (𝑡 ) ].
10: update𝑈𝑡𝑖𝑙𝑖𝑡𝑦G⊔ (𝑡), 𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦,G⊔ (𝑡), 𝑆𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠,G⊔ (𝑡).
11: end while

System quality is measured with hit rate and average Click-
Through Rate (CTR), and fairness is measured with 1/HHI (intro-
duced in Section 3.1) and 1/MaxDiff. For both metrics, higher values
represent better performances (better recommendation quality or
fairer in item perspective).

𝑟𝑢𝑛𝑖𝑡 (𝐺𝑖 , 𝑡) =
𝑅(𝐺𝑖 , 𝑡)
𝑈 (𝐺𝑖 , 𝑡)

(11)

𝐻𝐻𝐼 (𝑡) =
∑
𝐺𝑖 ∈𝐺

(
𝑟𝑢𝑛𝑖𝑡 (𝐺 𝑗 , 𝑡)∑

𝐺 𝑗 ∈𝐺 𝑟𝑢𝑛𝑖𝑡 (𝐺 𝑗 , 𝑡)
)2

𝑀𝑎𝑥𝐷𝑖 𝑓 𝑓 (𝑡) = 𝑚𝑎𝑥 (𝑟𝑢𝑛𝑖𝑡 (𝐺𝑥 , 𝑡)) −𝑚𝑖𝑛(𝑟𝑢𝑛𝑖𝑡 (𝐺𝑥 , 𝑡))∑
𝐺 𝑗 ∈𝐺 𝑟𝑢𝑛𝑖𝑡 (𝐺 𝑗 , 𝑡)

(12)

In the following two sections, we carry out abundant experi-
ments based on our fairness-aware re-distribution framework in
both online and offline settings, showing that item fairness and
recommendation performance can be improved simultaneously.
Section 7 uses exposure records of the real-world online system as
𝑅𝑜𝑟𝑖,𝑓 and incorporates our fair utility estimation model in 𝑆𝑟𝑒,𝑔 for
real-time fairness valuation, validating the feasibility and effective-
ness of the re-distribution framework with fair utility. In Section
8, we bring state-of-art recommendation algorithms to substitute
the online system as 𝑆𝑜𝑟𝑖,𝑓 , further validating the generality of our
framework on different strategies.

7 ONLINE SIMULATIONS
7.1 Experimental Settings
7.1.1 Baseline Methods.
We select five baseline methods for our simulations:

(1) System: expose records according to original exposure or-
ders without a group selection process.

(2) Random: select groups randomly.
(3) PD [44] (latest de-biasing method): leverage popularity bias

to remove its bad impact during training.
(4) Quality-only: select the group with the top quality.
(5) Fairness-only: select the most unfairly treated group.
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Table 3: The Fairness-aware Re-distribution is a dynamic
regulatory process. We show the snapshot when 20% of sys-
tem logs are re-exposed and the average performance from
beginning to 20%with sample intervals of 1%. Systemperfor-
mances are measured by the recommended quality with Hit
Rate andCTR, and item-level fairness situationswith 1/HHI
and 1/MaxDiff (see Eq.12, higher values represent fairer per-
formances). The best-performingmethod is in bold, and the
second-best method is underlined.

𝑆𝑟𝑒,ℊ

at 20% Average till 20%

HR CTR 1/HHI 1/MaxD HR CTR 1/HHI 1/MaxD

System 0.283 0.263 12.2 4.68 0.278 0.263 11.1 4.69
Random 0.266 0.250 22.3 14.2 0.265 0.254 22.3 11.9
PD 0.323 0.320 7.54 4.39 0.328 0.325 6.61 3.59
Q-only 0.415 0.369 1.76 1.33 0.371 0.343 4.10 2.19
F-only 0.281 0.264 21.9 11.4 0.271 0.258 22.7 11.7
Linear 0.287 0.269 21.1 9.73 0.279 0.265 22.0 10.3
Q-ensured 0.289 0.270 20.7 10.7 0.278 0.265 21.4 11.1
F-ensured 0.291 0.273 18.8 9.46 0.289 0.276 22.7 11.7

Quality-only and Fairness-only can be considered special cases
for Linear with 𝛼 = 1 and 𝛼 = 0, respectively. The latest de-biasing
method PD is compared in this scenario to demonstrate that elimi-
nating popularity bias does not necessarily enable item-level fair-
ness improvements.

7.1.2 Parameter Settings.
In the experiment, we set the intervention time 𝐾 = 100 for each
item since the fair utility prediction model requires a minimum of
100 records as input. For evaluations, we snapshot each state when
1% more of re-exposed records is added to 𝑅𝑟𝑒,𝑔 . For analysis, we
also inspect the average system performances till exposure time at
20%. In pilot experiments, the hyper-parameters 𝛼 , 𝛽 and 𝛾 in two-
dimensional re-distribution strategies 𝑆𝑟𝑒,𝑔 are fine-tuned with grid
search in the range of [0, 1], and are set as 𝛼 = 0.45, 𝛽 = 0.60, 𝛾 =

0.65 for the best model performance. Further parameter-sensitive
experiment results are shown in the offline analysis in Section 8.

7.2 Results and Analysis
7.2.1 Performance Comparison.
Table 3 summarizes the results of different methods with the pre-
dicted fair utility. We have the following observations:

(1) We report both the snapshot when 20% of system logs are
re-distributed and the average performance from the beginning till
20% with a sample interval of 1%. In general, most methods achieve
steady results across time.

(2) Without incorporating any fairness factors, the Random
method and Quality-only method can only optimize one dimension,
fairness and recommendation quality, respectively, while hurting
another metric significantly.

(3) The de-biasing method (for improving recommendation qual-
ity), PD, aims at alleviating popularity bias among items in the
training process. It achieves significantly better performance than
the original system on recommendation accuracy. However, the
item fairness declines significantly. This suggests that adjusting

Table 4: The best-performingmethod is in bold and "*" repre-
sents a significant improvement in the same strategy using
Obs Utility or Pred Fair Utility. Results illustrate the stable
improvement in item fairness by utilizing Pred Fair Utility.

Strategy 𝑆𝑟𝑒,ℊ
at 20% Average till 20%

1/HHI 1/MaxDiff 1/HHI 1/MaxDiff

System (wo 𝑆𝑟𝑒,ℊ) 12.2 4.68 11.1 4.69
Fairness-only (Obs) 19.9 7.96 21.8 9.34
Fairness-only (Pred) 21.9** 11.4** 22.7 11.7*
Linear (Obs) 19.9 7.96 20.8 8.50
Linear (Pred) 21.1 9.73 22.0 10.3*
Quality-ensured (Obs) 18.8 7.58 20.8 9.07
Quality-ensured (Pred) 20.7** 10.7** 21.4 11.1*
Fairness-ensured (Obs) 15.1 6.08 21.8 9.34
Fairness-ensured (Pred) 18.8** 9.46** 22.7** 11.7**

(a) recommendation quality (b) fairness situation

Figure 5: Comparison between Random and Fairness-only
methods with Observed Utility and Predicted Fair Utility.

popularity bias does not necessarily guarantee item fairness im-
provements. Another reason for the poor performance may be that
our dataset is sparse on the user side, which does not satisfy the 10-
core filtering requirements for each user in this de-biasing method.

(4) As for the fairness-aware methods, most of them significantly
improve recommendation quality and group-level item fairness
compared to the original system. This finding indicates that item
fairness and recommendation accuracy can be improved simulta-
neously. Comparing different methods for incorporating the item
fair utility, we find that Fairness-only method achieves the most
significant fairness improvement and is the only one that compro-
mises the recommendation quality to some extent. On the other
hand, Fairness-ensured method is the only one achieving significant
improvements in both dimensions dynamically.

7.2.2 Analysis on Different Utility.
We further inspect how the performances of Observed Utility and
Predicted Fair Utility change. Table 4 presents the comparisons in
fairness-aware 𝑆𝑟𝑒,𝑔 and Figure 5 shows the dynamic changes of
Random, Fairness-only (Obs), and Fairness-only (Pred) on recom-
mendation quality and fairness situation. Fairness with Predicted
Fair Utility quickly surpasses Observed Utility as well as random
exposure in the early stage, indicating that the measurement of
Predicted Fair Utility is approaching the true Item Utility quickly.
Throughout the dynamic process, although the recommendation
quality is sightly hurt in the first half process, Predicted Fair Utility
consistently outperforms the Fair Utility in fairness improvements.
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Table 5: Performances of fairness-aware re-distribution strategies, 𝑆𝑟𝑒,ℊ (Linear, Quality-ensured, Fairness-ensured), on three
state-of-the-art personalized recommendation methods, 𝑆𝑜𝑟𝑖,𝒻 (BUIR, TiSASRec, KDA), at 20% of system exposure. The best-
performing method is in bold, and the second-best method is underlined. The results validate that our framework is effective
in improving item fairness on different systems without compromising recommendation quality.

𝑆𝑟𝑒,ℊ

𝑆𝑜𝑟𝑖,𝒻 BUIR TiSASRec KDA

HR CTR 1/HHI 1/MaxDiff HR CTR 1/HHI 1/MaxDiff HR CTR 1/HHI 1/MaxDiff

Base (wo 𝑆𝑟𝑒,ℊ) 0.203 0.126 6.326 4.014 0.359 0.223 6.948 3.908 0.372 0.231 7.247 5.138
Random 0.168 0.092 14.48 9.591 0.292 0.184 16.52 15.41 0.340 0.205 13.19 17.65

Linear 0.190 0.107 15.37 10.66 0.320 0.206 16.94 17.14 0.379 0.226 13.32 16.38
Quality-ensured 0.246 0.176 7.592 5.498 0.352 0.228 14.33 10.02 0.396 0.249 11.64 8.225
Fairness-ensured 0.208 0.125 13.41 9.114 0.353 0.230 14.19 9.860 0.379 0.226 13.33 16.45

These results illustrate that significant and stable improvement
in item fairness is achieved with Predicted Fair Utility. It further
validates the effectiveness of the definition of Fair Utility concept
and the low-cost Fair Utility prediction method in Section 5.

8 FURTHER OFFLINE ANALYSIS
In this section, we further investigate the usefulness of this frame-
work in a broader range of recommendation systems.

8.1 Exposure Simulation
The real-world online short-video recommender system generates
the record sequence 𝑅𝑜𝑏𝑠 , while we hope to simulate more sets of
item exposure sequences, 𝑅𝑜𝑟𝑖,𝒻 , that different recommendation
systems would provide. Based on this goal, we select three lastest
algorithms as personalized recommendation strategies 𝑆𝑜𝑟𝑖,𝒻 :

(1) BUIR [17] (SIGIR 21): latest general algorithm.
(2) TiSASRec [19] (WSDM 20): sequential and time-aware rec-

ommender method.
(3) KDA [35] (TOIS 21): latest time- and knowledge-aware se-

quential recommendation algorithm.
We only incorporate the item content tag information, which di-

vides items into 15-25 groups, for the knowledge-aware model. Due
to space limitations, the detailed 𝑅𝑜𝑟𝑖,𝒻 simulation algorithm under
the above three methods is introduced in Appendix B. The out-
put exposure sequence 𝑅𝑜𝑟𝑖,𝒻 contains 18,714 interactions among
9,936 users. Statistics about 𝒻’s recommendation qualities and the
generated item exposure sequences 𝑅𝑜𝑟𝑖,𝒻 are shown in table 6.

Table 6: Information of test results and corresponding expo-
sure sequences under three recommendation algorithms 𝒻.

Strategy
𝑆𝑜𝑟𝑖,𝒻

𝒻’s Performance in the Test Set 𝑅𝑜𝑟𝑖,𝒻

HR@5 NDCG@5 HR@10 NDCG@10 Item CTR

BUIR 0.187 0.136 0.218 0.146 128 0.058
TiSASRec 0.377 0.288 0.502 0.329 298 0.124
KDA 0.516 0.371 0.628 0.407 187 0.146

8.2 Experimental Settings
Based on the offline 𝑅𝑜𝑟𝑖,𝒻 of three different recommendation al-
gorithms 𝒻, we further conduct simulation experiments with our
fairness-aware re-distribution framework. Baseline methods are:

(1) Base: direct 𝑆𝑜𝑟𝑖,𝒻 system outputs, without the 𝑆𝑟𝑒,ℊ process.

(2) Random: with the random group selection as 𝑆𝑟𝑒,ℊ.
In the experiments, we set the intervention 𝑘 = 3% ∗ |𝑅𝑜𝑟𝑖,𝒻 |, the

same as the online simulation in the above section. We also follow
the online settings for evaluations, reporting the system (Base)
performance at the exposure time of 20%. In pilot studies, hyper-
parameters are fine-tuned with grid search in range of [0,1] and
are set as 𝛼 = 0.45, 𝛽 = 0.05, 𝛾 = 0.85 on all three systems. As we
filter the dataset in order to run recommender algorithms 𝒻, there
is not enough data to support the dynamic fair utility estimation
model in the early stages (|𝑅 | = 18, 714, |𝐼 | = 128 ∼ 298). To avoid
data leakage, we split the random experiment data 𝑅𝑟𝑎𝑛𝑑 into two
subsets for fair utility calculation in simulations and evaluations,
respectively.

8.3 Results and Analysis

(a) recommendation quality (b) fairness situation

Figure 6: Grid search for parameter 𝛼 in method Linear.

Figure 6 shows the parameter-sensitive pilot study for strategy
Linear on BUIR. The larger of parameter 𝛼 , the more 𝑆𝑟𝑒,ℊ tends to
high-quality groups, and conversely, it is more concerned with the
under-exposed groups. Accordingly, we observe that the largest
setting surpasses the system’s recommendation performance while
there is no relief on item unfairness. We pick the 𝛼 = 0.45 setting
since it achieves significant fairness improvements and performs
closest to the system’s recommended performance.

Table 5 presents a summary of fairness-aware re-distribution
results based on the three different types of state-of-the-art rec-
ommendation algorithms. In the horizontal view, the basic model,
time-aware sequential model, and time- and knowledge-aware se-
quential model achieve better recommendation performance one
by one both without and with re-distribution strategies. In compar-
ison, this progressive improvement does not hold to fairness per-
formances. In the vertical view, our fairness-aware strategies 𝑆𝑟𝑒,ℊ
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are helpful to improve the item fairness, at the same time adding
positive or negligible negative impacts on the overall system recom-
mendation performance on all the three personalized 𝑆𝑜𝑟𝑖,𝒻 output.
These results verify the migration capability of our fairness-aware
re-distribution framework as well as the non-conflicting relation-
ships between recommendation performance and item fairness.

9 CONCLUSION
Item fairness is vital for real-world recommender systems, espe-
cially for content producers and communities. It is widely agreed
that the exposure of each item should be positively correlated to its
utility to achieve item fairness, so one of the keys is how to calculate
item utility. In this study, we refine the item utility measurement
with fair utility, defined as the proportion of users interested in
this item among all users. Firstly, a large-scale online random expo-
sure experiment is designed and conducted to estimate fair utility,
showing discrepancy and a correlation between observed utility
and fair utility. Then we model the handy historical observed utility
sequences to the fair utility. At last, we conduct simulation exper-
iments and demonstrate that improvements in item fairness and
recommendation quality can be achieved simultaneously based on
the predicted fair utility.
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A DATASET
This dataset is collected from a commercial mobile application for
short video recommendations. In this online platform, the average
length of videos is around 30 seconds, and videos are displayed
full-screen.

A.1 Collection
Note that this dataset only records the desensitized user id, item id,
and user-allowed interaction information. All the data collection
process meets the requirements of relevant laws and regulations.

A.1.1 System Data, 𝑅𝑜𝑏𝑠 .
As warm items have already been recommended to some users,
we choose cold items. Every hour, we randomly select 200 new
uploaded items and this sample period lasts for three days. For
each item, we record sensitive features, including video length, up-
load time, content tag (games, news, foods, parenting, etc.), author
information (number of followers), and collect the regular recom-
mender system interaction records 𝑟 = (𝑢, 𝑖, 𝑓 , 𝑡) within three days
from uploading, with user id, item id, feedback, and interaction
timestamp.

A.1.2 Experiment Data, 𝑅𝑟𝑎𝑛𝑑 .
For uniform feedback, we conduct random exposure experiments.
In the online experiments, we control several confounding factors
(item uploaded time and exposed time). Specifically, we expose the
same group of items in 𝑅𝑜𝑏𝑠 (which are randomly selected) to sto-
chastic users, with the intensity of 20 exposure per hour per item
for two days. This experimental flow is randomly mixed into the
normal personalized recommendation flow. Therefore, the feedback
in 𝑅𝑟𝑎𝑛𝑑 reflects users’ preferences under natural browsing behav-
ior. The obtained data are first sampled uniformly from the item
space and then randomly from the user space. As the probability
of relevance for a random user is equal to the relevance ratio in
the whole user space, these statistics can approximate complete
information.

A.2 Statistics

Table 7: Statistics of item exposure and utility based on ob-
served system and random experiment records after 100-
exposure-filter.

System Experiment
Exp. Click Like Exp. Click Like

mean 4,440 0.2483 0.0281 970 0.1445 0.0040
std 40,592 0.1016 0.0359 230 0.0434 0.0023
min 100 0.0092 0.0000 101 0.0434 0.0023
25% 132 0.1795 0.0057 830 0.1141 0.0024
50% 205 0.2368 0.0152 892 0.1370 0.0037
75% 549 0.3062 0.0370 1,081 0.1667 0.0054
max 1,143,357 0.8357 0.2823 1,621 0.4362 0.0268

The statistics of𝑅𝑜𝑏𝑠 ,𝑅𝑟𝑎𝑛𝑑 are shown in Table 7. Note that a con-
stant is subtracted in the online metrics shown due to commercial
consideration, but it does not affect the findings.

B OFFLINE EXPOSURE GENERATION
In this section, we introduce the offline item exposure sequence
𝑅∗ = 𝑅𝑜𝑟𝑖,𝒻 generation process under the recommendation system
𝒻.

In order to run personalized strategies 𝑆𝑜𝑟𝑖,𝒻 under leave-one-
out strategies, we filter out users with less than three positive or
one negative feedback in 𝑅𝑜𝑏𝑠 in our xxx_Fair dataset to get the
corresponding subset 𝑅′

𝑜𝑏𝑠
with user set𝑈 ′ and item set 𝐼 ′.

Formally, we separate𝑅′
𝑜𝑏𝑠

into the positive interaction list𝑅′
𝑜𝑏𝑠,𝑃

and negative record list 𝑅′
𝑜𝑏𝑠,𝑁

:

𝑅′
𝑜𝑏𝑠, 𝑃

= 𝑅′
𝑜𝑏𝑠
[𝑅′

𝑜𝑏𝑠
.𝑓 = f.1]

𝑅′
𝑜𝑏𝑠, 𝑁

= 𝑅′
𝑜𝑏𝑠
[𝑅′

𝑜𝑏𝑠
.𝑓 = f.0]

Following the experimental settings in [35, 36], we choose the
last interaction in 𝑅′

𝑜𝑏𝑠, 𝑃
for each user as the candidate items in the

test set (𝑅′
𝑜𝑏𝑠, 𝑡𝑒𝑠𝑡

), the second last items for each user as candidates
in validation set (𝑅′

𝑜𝑏𝑠, 𝑣𝑎𝑙𝑖𝑑
), and the remaining positive interac-

tions in 𝑅′
𝑜𝑏𝑠, 𝑃

as 𝑅′
𝑜𝑏𝑠, 𝑡𝑟𝑎𝑖𝑛

, the training set. A recommendation
system, 𝒻, trains its model on 𝑅′

𝑜𝑏𝑠, 𝑡𝑟𝑎𝑖𝑛
∪ 𝑅′

𝑜𝑏𝑠, 𝑣𝑎𝑙𝑖𝑑
. We recom-

mend top-k (k=5,10,|𝐼 ′ |) items from the whole item set 𝐼 ′ for each
test or validation case. Given the same generated user request list
𝑅′
𝑜𝑏𝑠,𝑟𝑒𝑞

, we produce offline exposure sequences 𝑅𝑜𝑟𝑖,𝒻 under dif-
ferent personalized strategies 𝑆𝑜𝑟𝑖,𝒻 . The whole simulation process
is described in Algorithm B.

Algorithm 2 exposure sequence generation

Input: training data 𝑅′
𝑜𝑏𝑠, 𝑡𝑟𝑎𝑖𝑛

, validation data 𝑅′
𝑜𝑏𝑠, 𝑣𝑎𝑙𝑖𝑑

, testing
data 𝑅′

𝑜𝑏𝑠, 𝑡𝑒𝑠𝑡
, negative data 𝑅′

𝑜𝑏𝑠, 𝑁
, Recommendation System

(Algorithm) 𝒻
Output: offline exposure sequence 𝑅∗ = 𝑅𝑜𝑟𝑖,𝒻
1: generate the user request list:
2:

𝑅′
𝑜𝑏𝑠,𝑟𝑒𝑞

= {(𝑟 .𝑢, 𝑟 .𝑡) |∀𝑟 ∈ (𝑅′
𝑜𝑏𝑠, 𝑁

∪ 𝑅′
𝑜𝑏𝑠, 𝑡𝑒𝑠𝑡

)}
3:

𝑅′
𝑜𝑏𝑠,𝑟𝑒𝑞

.𝑡∗ = 𝑅′
𝑜𝑏𝑠,𝑟𝑒𝑞

.𝑔𝑟𝑜𝑢𝑝𝑏𝑦 (𝑢) .𝑡 .𝑟𝑎𝑛𝑘 ()
4: train the recommendation system 𝒻 with data 𝑅′

𝑜𝑏𝑠, 𝑡𝑟𝑎𝑖𝑛
and

𝑅′
𝑜𝑏𝑠, 𝑣𝑎𝑙𝑖𝑑

.
5: run the trained model 𝒻 on the test set, with 𝑅′

𝑜𝑏𝑠, 𝑡𝑒𝑠𝑡
as

ground-truth, all items 𝐼 ′ as ranking candidates.
6: generate the recommended item candidate list 𝐼𝒻 for each test

case (user) (𝑟 .𝑢, 𝑟 .𝑡) and organize the corresponding feedback
list 𝐹𝒻 .

7: produce the exposure sequence based on user request 𝑅′
𝑜𝑏𝑠,𝑟𝑒𝑞

and personlized item candidate list 𝐼𝒻 :
8: 𝑅∗ = {(𝑟 .𝑢, 𝐼𝒻 (𝑟 .𝑢) [𝑟 .𝑡∗]), 𝐹𝒻 (𝑟 .𝑢) [𝑟 .𝑡∗], 𝑟 .𝑡) |∀𝑟 ∈ 𝑅′𝑜𝑏𝑠,𝑟𝑒𝑞}
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