
A Multi-level Interactive Lifelog Search Engine
with User Feedback

Jiayu Li
DCST, IAI, BNRist,
Tsinghua University

Beijing, China
lijiayu16@mails.tsinghua.edu.cn

Min Zhang∗
DCST, IAI, BNRist,
Tsinghua University

Beijing, China
z-m@tsinghua.edu.cn

Weizhi Ma
DCST, IAI, BNRist,
Tsinghua University

Beijing, China
mawz@tsinghua.edu.cn

Yiqun Liu
DCST, IAI, BNRist,
Tsinghua University

Beijing, China
yiqunliu@tsinghua.edu.cn

Shaoping Ma
DCST, IAI, BNRist,
Tsinghua University

Beijing, China
msp@tsinghua.edu.cn

ABSTRACT
With the rise of portable wearable devices, it is easier for users to
save their lifelog data. As lifelog is usually disorganized with multi-
modal information (even noisy sometimes), an interactive search
engine is crucial for users to review and explore their lifelog. Unlike
traditional search engines, lifelog search includes multi-modality
information of images, text and other data from sensors, which
brings challenges to data arrangement and search. Accordingly,
users’ information need is also multi-level. Hence, a single interac-
tion mechanism may not be able to satisfy users’ requirements. As
the data set is highly personalized, interaction and feedback from
users should also be considered in the search engine. Therefore, in
this paper we present an interactive multi-modality lifelog search
engine to help users manage and find lifelog data. To this end, lifelog
data is clustered and processed in multi-level processing. Then, we
build an interactive search engine, including text as query, image
as query, and timeline view modules. Besides, the system is able to
adopt user feedback mechanisms in multi-round queries. Our sys-
tem shows promising experimental results on LSC’20 dataset and
development topics. The text-based search module gives correct
results on more than 60% of the development topics at LSC’20.

KEYWORDS
Lifelogging, Interactive Search Engine, Information Retrieval

ACM Reference Format:
Jiayu Li, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020. A Multi-
level Interactive Lifelog Search Engine with User Feedback. In Proceedings
of the Third Annual Workshop on the Lifelog Search Challenge (LSC ’20),

∗Contact author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LSC ’20, June 9, 2020, Dublin, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7136-0/20/06. . . $15.00
https://doi.org/10.1145/3379172.3391720

June 9, 2020, Dublin, Ireland. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3379172.3391720

1 INTRODUCTION
Lifelogging is the process of passively gathering, processing and
reflecting on life experience data collected by sensors [2]. With
rapid development of portable devices, lifelogging becomes increas-
ingly popular in people’s daily life, and lifelog records reveal great
potential in exploring and comprehending how we live our life.

As a way of recording daily life, lifelog includes tremendous
but disorganized data. Sometimes people want to go through their
records or search in the logs, which can help them recall details of
certain scenes. Therefore, it is necessary to develop tools to organize
lifelog data and enable users to search their records conveniently.

On the other hand, lifelog searching is a challenging problem. In
lifelog searching, the photos are usually the search objects. How-
ever, traditional image search engines can not be directly used in
the lifelog scenario, since the dataset organization and size are very
different. Multi-modality information is recorded in lifelog through
various sensors [9], which increase the difficulty of data processing
and displaying. The multi-media information also requires multi-
modally search modules to meet users’ needs. Besides, lifelog is
extremely personalized and users are usually more familiar with the
dataset than in traditional search engine. Also, lifelog search is gen-
erally complex with noisy results, which needs users’ clarification.
Therefore, the search engine should be highly interactive.

To encourage researches in lifelog search applications, many
related tasks and challenges have been proposed in recent years.
Lifelog Search Challenge (LSC) is one of them, which aims at evalu-
ating the performance of multi-media lifelog retrieval tools in live
evaluation campaigns [4]. The challenge has held two successful
iterations in 2018 and 2019. Compared with the past two iterations,
this year the dataset expands from logs of less than one month
to more than 100 days. The expanded dataset enlarges the search-
ing space, as well as provides more complex spacial data, which
brings more challenges for the accuracy of search engine. The abun-
dant metadata information also provides more possibility for user
queries, requiring more flexibility in user interaction.

To cope with the challenges in lifelog retrieval and perform the
task in LSC’20, We propose a highly-interactive multi-modal lifelog

https://doi.org/10.1145/3379172.3391720
https://doi.org/10.1145/3379172.3391720
https://doi.org/10.1145/3379172.3391720

search engine. Compared with existing lifelog search engines, we
generate multi-level features and consider user feedback in text-
based queries. Besides, we also design image-based search and
timeline view modules. Our main contributions are as follows:
• Multilevel features in lifelog records are generated and applied
in our search engine, including image visual features, detail
descriptions of the scene, and behavior expression.

• An interactive lifelog search engine is proposed, which is able
to cope with not only textual queries but also image queries. A
timeline view module is also included.

• Experiments with 24 topics are conducted to verify the utility
of our search engine and promising results are shown.

2 RELATEDWORK
As images are usually the main content and search target in lifel-
ogging, lifelog search is related to traditional image retrieval re-
searches. Image retrieval has been studied since the 1970s in com-
puter vision and database management communities. At the early
stage, text-based image retrieval was popular, in which images
are first annotated with text, and then searched with text-based
database [15]. With the development of digital images production
and storage, using image queries to find similar images in database
became necessary in large-scale dataset, called content-based im-
age retrieval(CBIR) [5]. Meanwhile, user feedback is considered
in interaction with image retrieval systems [14][11]. However, im-
age retrieval works are mostly based on large-scale image datasets
without context information but lifelog search is built on personal
dataset, which is relatively small in size with rich metadata. There-
fore, the lifelog search engines should pay more attention to user
interaction and multi-modal data process.

With an increasing number of workshops and tasks on lifelog-
ging, there are already a number of researches about lifelog search
engines in recent years. In LSC’18 and LSC’19, many lifelog search
engines have been proposed. Some of the systems are modifications
of existing video search systems [7][1][8]. Others are designed
specifically for lifelog search. In two-stage search engine [6], multi-
modal image queries and faceted text queries were both supported
in the system. The Exquisitor system proposed a novel way of sim-
ply using relevance feedback from user to find results [12]. In the
Lifelog Retrieval System V2 in LSC’19 [10], a tree structure is used
for storing images, and answer reviewing module is employed for
user feedback. All these systems show the nature of multi-modality
and interaction in lifelog searching tasks. In our work, we also
propose a multi-modal interactive search engine. What’s more, we
summarize a multi-level feature generation method to extract fea-
tures from more metadata. And we introduce negative feedback
for user interaction. We also add the timeline view module, which
offers the user a well-structured overview of each day.

3 DATASET & FEATURE EXTRACTION
3.1 Dataset Overview and Preprocessing
The LSC’20 dataset is a new multi-modality dataset of 114 days’
records collected in 2015, 2016, and 2018 [3]. It contains more than
190k images taken by awearable camera, visual concepts detected in
the images, and textual metadata about the collection. The metadata

includes detailed time, location, activity, and biometrics information
about each picture. All data is collected from a lifelogger.

Since the photos are taken automatically, they can be blurry,
blocked, and even repetitive. Therefore, we need to remove noises
and duplicates from the images firstly. AnOpenCV library in python
1 is applied to detect and remove 16,009 blurry and blocked images.
Then, we choose the histogram similarity of the image’s RGB rep-
resentation as the similarity metric to detect duplication images:

𝑠 (𝐻𝑎, 𝐻𝑏) =
∑
𝑖 (𝐻𝑎 [𝑖] − 𝐻𝑎) (𝐻𝑏 [𝑖] − 𝐻𝑏)√∑

𝑖 (𝐻𝑎 [𝑖] − 𝐻𝑎)2
∑
𝑖 (𝐻𝑏 [𝑖] − 𝐻𝑏)2

(1)

where 𝐻𝑎 and 𝐻𝑏 are color histogram of two images, and 𝐻 is
average of all histogram bins. After some pilot experiments and
hand annotations, neighboring images with similarity over 0.85 are
judged to be similar and clustered into a group. As photos in the
same group are taken in similar scene, each group is called a shot.
For each shot, the image with the most number of visual concepts is
chosen as the key image. At last, we have 51,144 shots of denoised
images, which is treated as the atom unit for feature generation and
search, reducing the computation for our search engine greatly.

3.2 Multilevel Feature Extraction
The lifelog dataset is deeply multi-modal, continuous and poten-
tially error-laden [2], so a clear structure is necessary to organize
the data. We propose a three-level feature extraction method, in
which visual, textual, and behavior features are extracted.

3.2.1 Visual Features. At the first level, visual features of shots are
extracted. For each shot, the key image is divided into 3x3 parts, and
main color of each part is classified into one of ten main colors:
white, black, gray, red, orange, yellow, green, cyan, blue, and purple.
Lightness, contrast, and saturation are also calculated from HSL
(Hue, Saturation, Lightness) representation of the key image. Visual
features are summarized in the first part of Table 1.

3.2.2 Textual Features. Visual concepts and metadata are extracted
as textual features. Firstly, start time and end time for each shot are
aligned in local and UTC time zone according to metadata infor-
mation. Then, biometrics data for shot is extracted and calculated,
of which calories and steps are represented by summation, while
elevation, speed and heart rate are averaged in shot.

Another important part of textual features is objects. Besides
visual concepts in the initial LSC’20 dataset, we use a state-of-art
object detection network, faster r-cnn [13] (pre-trained on COCO
dataset) to detect objects in each image. To get more descriptions
about the objects, DenseCap API from deepai2 is used to label the
color or texture of each object. Finally, objects detected by three
ways are merged and deduplicated, and objects with confidence
score higher than 0.5 are retained. Considering the processing time,
only the key image in each shot is detected by this API.

The second part of Table 1 presents textual features.

3.2.3 Behavior Features. At the highest level, users’ behavior fea-
tures are extracted. In the metadata file, we have time zone, location,
and coordinate of user in each minute. However, some locations
1https://pypi.org/project/opencv-python/
2https://deepai.org/

Table 1: Name, source, type and description of generated fea-
tures in three levels.
Feature Source Type Description

Visual Features
Main Color images list List of main color for 3*3

parts of key image
Lightness images float Brightness of key image
Contrast images float Contrast of key image
Saturation images float Saturation of key image

Textual Features
Local start
time

metadata datetime Start time of shot in local
time zone

Local end
time

metadata datetime End time of shot in local
time zone

UTC start
time

metadata datetime Start time of shot in UTC
time

UTC end
time

metadata datetime End time of shot in UTC
time

Elevation metadata float Average elevation
Calorie metadata float Total calorie intake
Step metadata int Total steps
Speed metadata float Average speed
Heart rate metadata float Average heart rate
Objects visual concepts,

object detection
model and API

list Objects seen in the scene

Behavior Features
Locations metadata and man-

ual expansion
string Possible location during

the shot
Activities metadata string Activity labeled in data

set

are missing. So we collect the longitude and latitude for the known
locations, and fill in the missing locations by their coordinates. If
the location is still undefined and the lifelogger was not moving
(judged from biometrics), the location will be tagged same as past.
The few undefined locations are labeled as ‘unknown’. To better
use the locations, we expand and clarify location manually with
the help of google map, and time zone is also taken as the overall
location. Meanwhile, activity is labeled for each shot as well.

Behavior features are summarized in the third part of Table 1.

3.3 Contextual information
In practice, it is natural for users to recall events before or after the
scene when searching for a certain time point. So we add context in-
formation based on features generated for each shot. To be specific,
locations, activities, and objects in past or future an hour are
collected as context features for a shot, named as past and future
features respectively.

4 INTERACTIVE SEARCH ENGINE
In this section, we introduce search mechanism and interactive
interface of our system. In the lifelog search process, users may
generally recall the target scene and repeatedly modify the query.
So we build a multi-round highly-interactive text as query search

module. Besides text, it is also necessary to provide a way for users
to search for similar images. For example, when a user wants to
know the last time he/she went to a certain restaurant, he/she can
take a picture of the restaurant, and search for similar scenes in
his/her records. Therefore, we further design a search component
with images as query. In addition, to give users a clearer way to un-
derstand lifelog in general, a timeline view module is also provided
for user. The framework of our system is shown in Figure ??.

4.1 Search Mechanism
In our system, each shot, clustered with the methods in Section 3.1,
is represented as a document. Each document contains abundant
visual, textual and behavior features described in Table 1, which are
extracted from images and metadata information with the multi-
level feature extraction approach described in Section 3.2. Each
feature corresponds to a facet in search engine schema. Whoosh3
is used for building our search modules, and inverted index is
employed to save documents. We also build a dictionary of time,
objects, location, and activity features in our dataset. To cope
with timeline view module, for each day in lifelog, neighboring
shots with the same location are clustered as a time period, and
objects with the highest confidence score are saved for each timeline
period. The offline process is shown in the middle of Figure ??.

In online search process of text as query module, given a textual
query, it is first parsed into facets and looked up in the feature
dictionary to form a faceted query automatically. All the facets are
combined with logical AND, while logical OR is used to connect
multiple query keywords within locations, activities, and objects
due to noises in these features. With the faceted query, BM25F
scoring function is then performed to search for top N relevant
shots, and results are listed in descending order of their relevance
scores. If the user further gives a modified query with negative
feedback at result list, the search engine will extract images and
keywords in feedback and exclude them in the following search
with logical NOT. Then, the search engine will present a new result
list. The flow path may continue until user finds the correct answer,
which is shown in the bottom left of Figure ??.

For image query, as user inputs a query image, the system will
extract visual features and detail descriptions using methods men-
tioned in Section 3.2.1 and Section 3.2.2. In timeline view module,
all information of the searched date interval will be displayed on
the website page as daily view of the user. The searching method
for timeline view, and searching and ranking methods for image
query are the same as the textual query module.

4.2 Search Engine Interface
In the following subsection, we demonstrate the interface and in-
teractive process of three modules in our system, which makes the
search engine convenient to use for both expert and novice users.

4.2.1 Text as query. As shown in Figure 2(a), in text as query search
module, user can type query in textbox and click the ‘Fill in forms’
button. The query parser of system will then parse and fill in the

3https://pypi.org/project/Whoosh/

Text query

Faceted
queryResult list

Query
parserNegative

Feedback Image query

Visual Information

Faceted
queryResult list

Date interval

Timeline Display
- Time period
- Location
- Objects
…

Interaction Module

Feature extraction

User

Shot document

BM25F Scoring

Inverted index

zzzzzzzzz
Timeline period

Cluster by locationSearch

Mechanism

Feature Generation

Multi-level feature extraction

Cluster Shots of images Metadata

Visual Features Textual Features Semantic Features

Figure 1: Framework of our lifelog search engine.

following faceted forms on the page automatically using the mech-
anism in Section 4.1. User can add, delete or modify any facets of
the query in an interactive way.

Once user submits the query, a result page containing top N
related shots (Figure 2(b)) will be returned. On the left, the query
text and faceted query are presented for further modification. The
right part is result list containing the key images of shots, meta-
data information and user feedback module. When user hovers the
mouse on the image, biometrics and objects in the shot will appear.

If user wants to continue with this query, he/she can modify the
query on the left part. For each shot in the ranking list, user can
give negative feedback by choosing to exclude this shot or similar
shots. User can also exclude images with certain objects by filling
in the text box. The selected objects, images, time, or location will
not display in the following result lists. By the feedback, we can
acquire more information need from the user that may not be fully
described by designed query facets.

4.2.2 Image as query. In this module, user can upload an image as
query, and choose to find photos similar in content or semantics
(or both). The interface is shown in Figure 3. Upon clicking on
‘search’, user can get a result list of images shown in the same way
as text as query result page (Figure 2(a)), but without the feedback
mechanism.

4.2.3 Timeline view. To give user a clearer way to understand
lifelog in general, we add a timeline view module (displayed in
Figure 4). At the top of page, user can input a date interval. Then
the location tracking, dwell time and relevant objects of each day in
the interval will be displayed. User can further click on any location
to view key images of the shots at that location in the corresponding
time period.

5 EXPERIMENTS AND RESULTS
In this section, we verify the text as query module of our search
engine on the development topics at LSC’20. In every topic, 6 in-
creasingly detailed descriptions are given step by step, revealed
every 30 seconds. Therefore, we construct queries in a sequential

way, submitting a query every 30 seconds. In our experiment, each
result list contains 10 shots.

5.1 Example Query
Taken the first topic in development topics, topic 25, as an example,
we perform a multi-round interactive search. The search process is
recorded in Figure 5 .We can observe from the second and third lines
that the automatic query parser is able to extract keywords from
the textual query correctly. The usefulness of negative feedback
also appears over time. For example, from 30s to 60s, with the same
faceted query, the rank of the accurate answer is lifted from third
to first due to feedback.

5.2 Overall Result
We then test our search engine with 24 development topics at
LSC’20. On the user side, the interfaces described in Section 4.2.1
and Section 4.2.2 are used.We input the textual query, let the system
parse query into facets, and search without any changes in faceted
query, except adding a few locations that the system fails to detect
automatically in topic 27, 32, 34, 42, and 43. On the system side, our
search engine is built on the four-month dataset released in LSC’20
and utilize the mechanisms described in Section 4.1.

Hit ratio is adopted as the evaluation metric for performance.
Result lists that contain at least a relevant result is considered a hit.

The overall performance of our system is shown in Table 2.
It is observed that as query description becomes more detailed,
the faceted query contains more keywords, and the hit ratio is
increasing. At 150s, more than 60% of queries are correctly found in
top 10 results, showing promising performance of our search engine.
Besides, we can see a remarkable promotion in performance in last
three stages of time. It may be associated with that most of the
key information is given after 90s. Explicit location or weekday
are usually given at 120s or 150s, which filter irrelevant results
efficiently. Another strong filter that often appears after 90s is time
of day. Accurate detection of objects in the scene also helps a lot.
For example, ’Unix book’ in topic 41 is exactly detected in relevant

(a) Search Page (b) Result Page

Figure 2: Interface for Text as query module.

Figure 3: Interface for Image as query module. Figure 4: Interface for Timeline view module.

Table 2: Performance of text as query module on 24 develop-
ment topics.

hit@1 hit@3 hit@5 hit@10
0s 0.04 0.04 0.04 0.04
30s 0.04 0.04 0.04 0.04
60s 0.04 0.04 0.04 0.08
90s 0.04 0.08 0.13 0.33
120s 0.04 0.25 0.33 0.50
150s 0.17 0.29 0.46 0.63

images, which lead to rank first of correct answer at 0s. On the other
hand, the hit ratio before 60s is low and slow-growing because the
description at first is general. For example, queries like ‘I was in
the bank’ match many scenes in the four-month logs, which may
result in low ranking of correct answers at the beginning.

Although we achieve 0.63 on hit@10 at 150s, which means our
system performs well on 15 topics, there are still 9 topics missed in
the experiment. Inspecting these topics, we summarize reasons for
mismatching as follows. Firstly, key objects from the queries may
not be detected in the relevant images. For instance, ‘a white dolls
house’ in topic 28 and ‘coffee machine’ in topic 36 are not detected
in the relevant results, leading to search failure of these topics.
Secondly, behavior features (location and activity) are insufficient
for some queries. Taken topic 37 as an example, ’I remember I
was washing clothes’, activity ‘washing’ is left out as we have no
relevant labels in dataset. This expands the search range greatly and
makes it hard to find answers. Besides, as the topics are designed for
the one-month dataset in LSC’19, some queries may be ambiguous
in the enlarged dataset this year.

For the computing time, the text query parser takes about 1
second to parse the query, and retrieval time is around 3 seconds.

Time 0s 30s 60s 90s 120s 150s

Query
Find the time when I was

looking at an old clock,

with flowers visible.

Find the time when I was

looking at an old clock,

with flowers visible. There

was a lamp also.

Find the time when I was

looking at an old clock,

with flowers visible. There

was a lamp also, and a

small blue monster

(perhaps a long rabbit)

watching me.

Find the time when I

was looking at an old

clock, with flowers

visible. There was a

lamp also, and a small

blue monster (perhaps a

long rabbit) watching

me. Maybe there were

two monsters.

Find the time when I was

looking at an old clock,

with flowers visible. There

was a lamp also, and a

small blue monster

(perhaps a long rabbit)

watching me. Maybe there

were two monsters. It was

a Monday or a Thursday.

Find the time when I was

looking at an old clock, with

flowers visible. There was a

lamp also, and a small blue

monster (perhaps a long

rabbit) watching me. Maybe

there were two monsters. It

was a Monday or a

Thursday. I was at home and

in a bedroom.

Parsed

Query
(Automatically)

objects:

flowers, old clock

objects:

flowers, old clock, lamp

objects:

flowers, old clock, lamp,

small blue monster

objects:

flowers, old clock,

lamp,

small blue monster

objects:

flowers, old clock, lamp,

small blue monster

weekday: Monday,

Thursday

objects:

flowers, old clock, lamp,

small blue monster, bedroom

weekday: Monday, Thursday

location: bedroom, home

Result

20160928_071412_000.jpg 20160921_181336_000.jpg 20160831_205608_000.jpg 20160822_061808_000.jpg 20160822_061808_000.jpg 20160822_061808_000.jpg

20160921_181336_000.jpg 20160831_205608_000.jpg 20160919_053811_000.jpg 20160925_190037_000.jpg 20160925_190037_000.jpg 20160811_064303_000.jpg

20160919_053811_000.jpg 20160919_053811_000.jpg 20160822_061808_000.jpg 20160903_231317_000.jpg 20160903_231317_000.jpg 20160818_151402_000.jpg

20160813_155703_000.jpg 20160822_061808_000.jpg 20160925_190037_000.jpg 20160911_210949_000.jpg 20160911_210949_000.jpg 20160926_064505_000.jpg

20160903_231317_000.jpg 20160925_190037_000.jpg 20160903_231317_000.jpg 20180526_163014E.jpg 20180530_202341E.jpg 20160822_193037_000.jpg

20160904_115144_000.jpg 20180527_181500E.jpg 20160904_115144_000.jpg 20180506_085314E.jpg 20180514_234106E.jpg 20160915_194940_000.jpg

20160826_184908_000.jpg 20160903_231317_000.jpg 20180512_140910E.jpg 20180529_183539E.jpg 20160911_093631_000.jpg 20180507_120343E.jpg

20160901_055616_000.jpg 20160924_184249_000.jpg 20160911_210949_000.jpg 20180515_123850E.jpg 20180515_202733E.jpg 20180507_122832E.jpg

20160914_230510_000.jpg 20160904_115144_000.jpg 20180503_185530E.jpg 20160822_202254_000.jpg 20160912_153257_000.jpg 20160822_061912_000.jpg

20180520_074046E.jpg 20180512_140910E.jpg 20180520_203554E.jpg 20160920_220620_000.jpg 20160914_230348_000.jpg 20180503_173841E.jpg

Negative

Feedback

exclude

20160813_155703_000.jpg,

20160826_184908_000.jpg,

20160901_055616_000.jpg,

20160914_230510_000.jpg,

20180520_074046E.jpg

exclude
20160921_181336_000.jpg,
20160924_184249_000.jpg,
20180527_181500E.jpg

exclude

20160831_205608_000.jpg

20160919_053811_000.jpg,

20160904_115144_000.jpg,

20180512_140910E.jpg,

20180503_185530E.jpg

exclude

20160822_202254_000.jpg,

20160920_220620_000.jpg,

20180526_163014E.jpg,

20180506_085314E.jpg,

20180529_183539E.jpg

exclude

20160914_230348_000.jpg,

20180514_234106E.jpg,

20180530_202341E.jpg

exclude images similar with

20160912_153257_000.jpg in

location

Figure 5: Interactive search process of topic25 in our system.(Correct answer is marked bold in the fourth row.)

Table 3: Performance of text as query module at 24 develop-
ment topics with user feedback.

hit@1 hit@3 hit@5 hit@10
0s 0.04 0.04 0.04 0.04
30s 0.04 0.04 0.08 0.08
60s 0.04 0.13 0.21 0.25
90s 0.17 0.21 0.29 0.50
120s 0.25 0.29 0.42 0.58
150s 0.42 0.46 0.58 0.63

(All the computing times are calculated for an interface running on
a server with Intel i7-5930K CPU)

5.3 Impact of Feedback
We further test the impact of user feedback mechanism in our
system. As the user feedback is highly interactive, we simulate an
interaction situation where an expert user gives negative feedback
to the first result (if it is wrong) and results that are irrelevant to
query obviously, using the interface displayed in Figure 2(b).

The results are displayed in Table 3. Comparing Table 2 and Table
3, we can see a noticeable improvement in performance. With user
feedback, the relevant results are detected earlier in the experiment.
Hit@10 achieves 0.25 at 60s, and hit ratio at 90s are comparable
to results at 120s without feedback. It shows that some relevant
results are low ranking at the beginning, because too many images
match the parsed query when it is not explicit, but we filter some
irrelevant images based on our comprehension of the query. This
indicates the information gap between original query and parsed
query, but also demonstrates the necessity and usefulness of user
feedback in lifelog search scenario. Meanwhile, the target results
are ranking higher with user feedback. For instance, hit@1 at 150s
promotes significantly. It is a natural result of removing irrelevant

images with high rank in negative feedback process. However, the
mismatched 9 queries are still not found in the experiment with
user feedback. User feedback mechanism is not able to completely
solve the shortcomings in feature extraction and pre-indexing.

6 CONCLUSION AND FUTUREWORK
In this paper we present our multilevel interactive lifelog search
engine with user feedback, which contains three components, text
as query, image as query, and timeline view.

We first propose a multi-level feature generation method to
extract information from the multi-modal dataset. Then a highly-
interactive search engine is designed, where user can find images
with textual/image queries and view daily timelines in lifelog. The
search engine is implemented with a user-friendly interface, so that
our system can be used by both expert and novice users.

The experiments on development topics show promising results
of our system.More than 60% of the topics are hit at the end of query,
which verifies the effectiveness of our automatic query parser and
search methods. And further experiments indicate the usefulness
of user feedback mechanism.

For future work, optimizingmethods to eliminate noise in dataset
can be a direction. More tools from computer vision and natural
language processing communities will be used for object detection
and semantic information extraction. Moreover, a better query
parser in text as query will also be considered to fill the gap between
textual and faceted query to generate more precise results.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Devel-
opment Program of China (2018YFC0831900) and Natural Science
Foundation of China (Grant No. 61672311, 61532011). Dr Weizhi
Ma has been supproted by Shuimu Tsinghua Scholar Program.

REFERENCES
[1] Münzer Bernd, Leibetseder Andreas, Kletz Sabrina, Primus Manfred Jürgen, and

Schoeffmann Klaus. 2018. lifeXplore at the lifelog search challenge 2018. In
Proceedings of the 2018 ACM Workshop on The Lifelog Search Challenge. 3–8.

[2] Gurrin Cathal, Smeaton Alan F, Doherty Aiden R, et al. 2014. Lifelogging: Personal
big data. Foundations and Trends® in information retrieval 8, 1 (2014), 1–125.

[3] Gurrin Cathal, Le Tu-Khiem, Ninh Van-Tu, Dang-Nguyen Duc-Tien, Jóns-
son Björn Þór, Lokoč Jakub, Hurst Wolfgang, Tran Minh-Triet, and Schoeffmann
Klaus. 2020. An Introduction to the Third Annual Lifelog Search Challenge,
LSC’20. In ICMR ’20, The 2020 International Conference on Multimedia Retrieval.
ACM, Dublin, Ireland.

[4] Dang-Nguyen Duc-Tien, Schoeffmann Klaus, and Hurst Wolfgang. 2018. LSE2018
Panel-Challenges of Lifelog Search and Access. In Proceedings of the 2018 ACM
Workshop on The Lifelog Search Challenge. 1–2.

[5] Long Fuhui, Zhang Hongjiang, and Feng David Dagan. 2003. Fundamentals of
content-based image retrieval. In Multimedia information retrieval and manage-
ment. Springer, 1–26.

[6] Nguyen Van Khan Isadora, Shrestha Pranita, Zhang Min, Liu Yiqun, and Ma
Shaoping. 2019. A Two-Level Lifelog Search Engine at the LSC 2019. In Proceedings
of the ACM Workshop on Lifelog Search Challenge. 19–23.

[7] Lokoč Jakub, Souček Tomáš, Čech Premysl, and Kovalčík Gregor. 2019. Enhanced
VIRET tool for lifelog data. In Proceedings of the ACM Workshop on Lifelog Search
Challenge. 25–26.

[8] Rossetto Luca, Gasser Ralph, Heller Silvan, Amiri Parian Mahnaz, and Schuldt
Heiko. 2019. Retrieval of structured and unstructured data with vitrivr. In Pro-
ceedings of the ACM Workshop on Lifelog Search Challenge. 27–31.

[9] Dodge Martin and Kitchin Rob. 2007. ‘Outlines of a world coming into existence’:
pervasive computing and the ethics of forgetting. Environment and planning B:
planning and design 34, 3 (2007), 431–445.

[10] Le Nguyen-Khang, Nguyen Dieu-Hien, Hoang Trung-Hieu, Nguyen Thanh-An,
Truong Thanh-Dat, Dinh Duy-Tung, Luong Quoc-An, Vo-Ho Viet-Khoa, Nguyen
Vinh-Tiep, and Tran Minh-Triet. 2019. Smart lifelog retrieval system with habit-
based concepts and moment visualization. In Proceedings of the ACM Workshop
on Lifelog Search Challenge. 1–6.

[11] Vasconcelos Nuno and Lippman Andrew. 2000. Learning from user feedback in
image retrieval systems. In Advances in neural information processing systems.
977–986.

[12] Khan Omar Shahbaz, Jónsson Björn Þór, Zahálka Jan, Rudinac Stevan, and Wor-
ring Marcel. 2019. Exquisitor at the lifelog search challenge 2019. In Proceedings
of the ACM Workshop on Lifelog Search Challenge. 7–11.

[13] Ren Shaoqing, He Kaiming, Girshick Ross, and Sun Jian. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[14] Guo Xiaoxiao, Wu Hui, Cheng Yu, Rennie Steven, Tesauro Gerald, and Feris
Rogerio. 2018. Dialog-based interactive image retrieval. In Advances in Neural
Information Processing Systems. 678–688.

[15] Rui Yong, Huang Thomas S, and Chang Shih-Fu. 1999. Image retrieval: Current
techniques, promising directions, and open issues. Journal of visual communica-
tion and image representation 10, 1 (1999), 39–62.

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset & Feature Extraction
	3.1 Dataset Overview and Preprocessing
	3.2 Multilevel Feature Extraction
	3.3 Contextual information

	4 Interactive search engine
	4.1 Search Mechanism
	4.2 Search Engine Interface

	5 Experiments and Results
	5.1 Example Query
	5.2 Overall Result
	5.3 Impact of Feedback

	6 Conclusion and future work
	Acknowledgments
	References

