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ABSTRACT
Activity recognition is a general but important task in various sce-
narios of human behaviors, in which some pre-defined activities are
recognized based on heterogeneous sensor data. Previous studies
mainly focused on the problem of long-term physical state distin-
guish, helping researchers understand the behaviors of individuals.
Differently, NTCIR-15 Micro-activity Retrieval Task (MART) con-
centrates on micro activity recognition, which aims to identify
activities in minutes of daily behavior, requiring a deeper insight
into the character of the activities.

In this paper, we present themethodologies that our team, THUIR,
employed in the MART. Firstly, various feature engineering meth-
ods are applied to extract valuable features from multi-modal raw
data, and feature selection methods are adopted to maintain use-
ful features. Then, we try two different ways to handle this task:
taking it as 1) a ranking problem or 2) a multi-label classification
problem, two distinct approaches are proposed: a similarity-based
approach for the ranking problem and tree-based classifiers for the
classification problem. In two-fold cross-validation experiments,
the combined model of correlation-based feature selection method
and rule-based Gradient Boosting Decision Tree (GBDT) classifier
outperforms other models, reaching mAP of 0.95 on the test set.
And this method also achieves the best performance among all
participants in the MART.
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1 INTRODUCTION
The THUIR team participates in the Retrieval Task of the NTCIR-15
Micro-activity Retrieval Task (MART) [7], and this report describes
our approach to solve the MART problem and discusses the official
results.

With the development of wearable devices, researches on individ-
ual activity sensor data have become popular in the community of
computer science, medicine, and psychology [5]. Based on various
kinds of sensor data, researchers studied the processing, recog-
nition, and analysis of human activities, in order to explore and
comprehend how we live our life.

In the NTCIR-15 Micro-activity Retrieval Task (MART), we focus
on the recognition of micro activities, which only last minutes. For
dataset collection, participants were asked to complete twenty activ-
ities (described in Table 1) for 3 times, 90 seconds each time. During
the experiment, their first-person perspective photos, biometric
signals, and computer interactions were recorded in a data stream.
Each repetition for participant is called an instance. The task is to
construct a retrieval system that could return the relevance ranking
list of all instances for a given query (i.e., a certain activity).

Compared with previous researches on activity recognition [13,
16, 23], there are several new challenges in the MART: 1) The multi-
modal data is collected from abundant kinds of sensors, requiring
carefully-designed methods to extract and combine different types
of records. 2) The activities collected in the MART occur over short
time-scales rather than the traditional long-duration activity seg-
mentation, which means valid features should be extracted from
relatively time-limited data. 3) Many of the micro-activities are
quite similar and hard to distinguish. Some activities may be recog-
nized by human easily, but others are much more difficult to predict
by observation.

To cope with these challenges, feature engineering and model
construction are carefully arranged in our approach. For the multi-
modal raw data, we design various feature extraction methods
adapting to different kinds of data, learning from previous works
in sequence signal processing, computer version, and biology com-
munities. Then feature selection proceeding is undertaken based
on the selected features, for better use of the limited data over
minutes. To distinguish similar activities, ranking methods and
classification methods are both conducted for the retrieval model.
Human-designed rules are combined with machine learning al-
gorithms to utilize both human knowledge for the activities and
algorithm understanding for digital data.

To summarize, our main contributions are as follows:
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• Various methods for feature selection are applied for the
dataset, which can handle the multi-modal and time-limited
data.

• We show that the retrieval task can be solved as 1) a ranking
problem or 2) a multi-label classification problem, and pro-
pose two distinct approaches: 1) similarity-based approach
for the ranking problem, and 2) tree-based approach for the
classification problem.

• Abundant experiments show promising results of all the
methods we proposed. Among them, the rule-based classifi-
cation model with feature selection method of correlation
and PCA dimensionality reduction achieves an mAP of 0.950
on the test set, ranking first at the MART retrieval subtask.

2 BACKGROUND AND RELATEDWORK
Activity recognition helps us understand the lifestyle and behaviors
of individuals, and it is widely applied in entertainment, healthcare,
and military [13, 18, 24]. With the development of multi-sensor
technologies, image, screenshot, accelerometer, eye movement,
electro-oculography, and electroencephalo-graph are applied to
detect human behaviors. Based on the multi-modal records, it is a
general but important topic to recognize and predict human activ-
ity. Previous activity recognition approaches include recognition of
home behavior [21, 22], military-specific activity [24], online activ-
ity [18], and hand gesture [9]. Cook divided these human activity
recognition tasks into video-based and sensor-based activity recog-
nition [2], which analyses visual data (such as photos or videos)
and smart-sensor data respectively. Since MART dataset mixes data
from different sources and involves abundant micro activities, the
task can be more challenging and interesting.

The basic process for an activity recognition task includes feature
extraction, feature selection, and activity classification with the
selected features.

At the first step, feature extraction determines the upper bound
of overall model performance. Various methods can be applied to
deal with the multi-sensor data. For feature extraction of photos and
screenshots, the latest progress in computer version is available. Ob-
ject detection methods such as ResNet101 model [6] can be applied
to recognize the items in surrounding scene, which contributes to
inferring human activity. OCR technique [8] for text detection is
useful for feature extraction in screenshot data, especially in web
links detection. As for time-series data, statistical characteristics
in the time domain and frequency domain are the most common
features. Other methods in sequence signal processing including
wavelet transform [4], LPC cofficient [4], peak detection are also
suitable for the raw data.

Then, the feature selection step is significant for excluding use-
less features and avoiding the influence of spurious correlation
characteristics. To exclude irrelevant features, human knowledge
is accurate but time-consuming for high-dimensional feature space.
Thus, machine learning method that can automatically select better
features is an alternative solution. Dash et al. [3] introduces the
feature selection framework for classification tasks, which includes
a generation procedure to produce the candidate feature set, an
evaluation procedure to examine the subset, and a stopping proce-
dure to decide when to stop. Filter-based, wrapper-based [12, 17],

Table 1: Description of twenty micro activities in MART.
Activity Group Activity ID Activity Description

Screen-relevant
activity

1 Writing/replying to an email
2 Reading text on screen.
3 Editing a presentation.
11 Watching a youtube video.
12 Browsing news website.

Physical
activity
(static)

4 Zoning out
while staring at a point.

16 Close eyes, refrained
from any movement.

Physical activity
(partial)

6 Physical precision task
with both hands.

9 Counting physical currency.
15 Drinking/eating.

19 Use both hands to
play a tennis ball.

Physical activity
(general)

17 Cleaning.
18 Repeatedly sit up-and-down.
20 Walking/pacing around.

Document-relevant
activity

5 Finance management.
7 Document organization.
8 Reading text on paper.
10 Writing with pen on paper.

Communications 13 Having a conversation
with another person.

14 Making a telephone call.

and embedded-based models [19] can be applied to this framework
according to the specific task.

The approaches to construct activity recognition and prediction
models are various. The most commonly-used classifiers are deci-
sion tree [14], support vector machine (SVM), naive Bayes, and hid-
den Markov models [11]. Deep learning models are also confirmed
to be effective in recent studies [10, 23], including deep neural
network [21], convolutional neural network [25], recurrent neu-
ral network, and ontological reasoning [15]. To choose the proper
model, accuracy, efficiency, and explainability are often considered
as evaluation metrics. Hybrid models combining the advantages of
different models are also widely used.

3 DATASET DESCRIPTION AND FEATURE
EXTRACTION

The dataset for MART task is a new record collection of daily micro-
activities. Since the dataset contains rich multi-modal data from
various sensor devices, numerical features should be extracted from
the raw data records. In this section, wewill give a brief introduction
to the original dataset and themethods we use for feature extraction.

3.1 Dataset Overview
The MART task dataset contains multi-modal sensor records of
7 participants doing 20 micro activities, which are presented and
grouped in Table 1. In the dataset, each participant repeats the 20
different activities for three times, one 90 seconds. Meanwhile, var-
ious biometric and movement information is collected, including



his/her first-person perspective photos, electrooculography data,
heart rate, acceleration of the head and both arms, mouse move-
ments, and screenshots of the computer. In total, 420 activities with
length of 90 seconds are recorded, and the entire dataset is about
2G.

For the retrieval task, 280 of the instances (2 repetitions of each
participant and activity) are released with labels as the training set,
and the rest 140 activities are left as the test set.

3.2 Photo Feature Extraction
The photos in the dataset are taken automatically from the first-
person perspective and contain rich information about the micro-
activities. On the one hand, participants are doing different types of
activities in different environment, so the similarity of photos in the
same instance can be different. For example, Reading text on paper
may generate similar images, but the photos taken whileWalking
around are more varying. Therefore, in each instance, the pairwise
similarity of image histogram is calculated for all the photos, and
the mean value, minimum, maximum, and variance of similarities
are extracted as features.

On the other hand, we try to extract the semantic concepts in
the photos to better understand the activity. In the original dataset,
detection probability of 1000 labels is computed for each instance
by a pre-trained resnet101 model [6]. Besides, Densecap API from
deepai1 is also used for object detection, where 294 concepts are
detected and the mean value, minimum, maximum, and variance
of photos in the same activity instance are computed.

Finally, we extract 4180 features from the photos for each in-
stance.

3.3 Biometric Signal Features
In the dataset, we have abundant records of time-aligned biometric
information, which reflects participants’ physiological status and
changes during the activities. Therefore, statistical analysis and
time series analysis methods are used for extracting features from
the biosignals.

3.3.1 EOG data. Electro-oculography (EOG) is a technology to
record the voltage difference caused by eye movement. It is widely
used in the detection of blink, glance, and vigilance. EOG up/down
activity and EOG left/right activity are recorded in the MART
dataset, calculated by re-referencing channels for electrodes placing
vertically and horizontally. Record units are in micro Volts with
a sampling rate of 100 HZ for the 90-seconds activity. We extract
features for both directions of EOG records with the following
steps.

Firstly, we select 8 time-domain features and 11 frequency-domain
features. The time-domain features include mean value, variance,
standard deviation, maximum value, minimum value, number of
zero crossings, difference between maximum, minimum values, and
mode value. The frequency-domain features include dc component
and 5 statistic values (mean, variance, standard deviation, slope, and
kurtosis) for both frequency-domain graph and amplitude. Secondly,
we calculate 12 dimensional LPC coefficient [1] as our features ac-
cording to the Levinson-Durbin’s recursive algorithm [20]. Since

1https://deepai.org/

there are two directions of EOG data, we get 62 EOG features for
each instance.

3.3.2 Acceleration and heart rate. The accelerator is a common
sensor to collect data in activity recognition. In the dataset, accel-
eration in three axes of head and both arms are recorded with a
sampling rate of 100 Hz, generating a sequence of digital data. For
each position and axis, we use the same methods to extract features.

First, the time-domain features from PANDAS file of the origi-
nal dataset are retained, including minimum, maximum, median,
mean value, variance, and length of every position and axis data se-
quence. Second, with the help of a toolkit for activity recognition2,
we get features in the frequency domain, such as dc component,
characteristic of frequency spectrum, and other statistic features
in magnitude spectra. Moreover, inspired by the recent work on
activity recognition [13], the relative energy of short-time Fourier
transform of the acceleration series in different frequency bands
is appended. And correlations between each pair of the three axes
are also computed.

The heart rate data is relatively simple, collected with a sampling
rate of 1Hz for each instance. Hence, the time-domain features are
extracted using the same method as acceleration. And frequency-
domain features are not computed due to the low frequency of
heart rate.

At last, 523 dimensions of acceleration features and 26 dimen-
sions of heart rate features are extracted and saved.

3.4 Computer Interaction Features
Participants’ interactions with computer are also recorded in some
of the activities. These kinds of data are able to be used for distin-
guishing screen-relevant and screen-irrelevant activities, as well as
classifying the instances with computer.

3.4.1 Mouse movements. Euclidean distance (in units of pixels) and
time differences (in seconds) between successive mouse movements
are recorded for our task and we can easily acquire the velocity of
mouse movements with them. Considering the correlation between
distance, time, and velocity, we only utilize distance and velocity
data because they are more explainable for translation and warp of
cursor. To be more specific, we utilize the recorded length, mean,
median, standard deviation values of distance, and velocity data
as our features (7 features in total). We also calculate the number
of peaks in velocity data as our feature (peak means a recorded
velocity which is greater than its 𝑛 nearest neighbors, and 𝑛 is 10 in
our practice). This feature might be correlated to real wrap times
in the activity. Finally, we extract 14 features for mouse movement
data.

3.4.2 Screenshots. About 1 to 5 pieces of screenshot are recorded
for each of some activity instances. For this kind of images, it’s hard
to extract semantic information with traditional object detection
models. To utilize the data effectively, the top of the screenshot is
snipped and detected with an OCR API provided by Baidu3. In this
way, we get the URL for websites and the toolbars of applications
(Called URL collectively in the following discussions), which helps
identify different activities.
2https://github.com/jindongwang/activityrecognition
3https://ai.baidu.com/tech/ocr



Table 2: Feature dimension for each kind of data.
Feature Original dimension Selected dimension

Acceleration 523 337
EOG 62 45

Heart rate 26 14
Mouse 14 8
Photo 4180 150 (or depend on PCA dimension)

Screenshot 1 1
User id 1 1
All 4806 556

4 FEATURE SELECTION
With high-dimensional features and limited labels, suitable ap-
proaches for feature selection are in demand. Previous researches
have shown lots of feature transformation and selection methods
in feature engineering [26]. Filter-based and tree-based methods
are commonly used, including correlation coefficient analysis, chi-
square test analysis, and decision tree methods. Methods based
on wrapper such as MDLM [17], LVF [12] are also verified to be
effective. Since most of our selected features are ordinary and our
labels are limited, we only attempt filter-based and tree-based meth-
ods. Meanwhile, we apply hybrid method by averaging the selected
features’ rank of different methods. Since the photo features are
too detailed, and most of the labels from ResNet are detected in
none of the instances, we only retain the Resnet-detected features
with max probability score greater than 0.5. For better comparison
of different methods, a fixed number of features is defined for each
kind of data (shown in Table 2). Then the following methods are
applied:

• Chi2. We calculate the variance of each feature, and fea-
tures with relatively greater variances are remained, since
they may be more informative to distinguish the labels. The
threshold of variance filter is chosen according to the feature
numbers in Table 2.

• Correlation. If two features are too correlated to one an-
other, they may express similar information. Therefore, to
simplify the feature set, one of them can be removed. Hence,
we calculate the pair-wise correlation of features and ran-
domly drop one feature of the pairs whose correlation is
greater than threshold.

• GBDT. In this approach, features are selected according to
the importance of each feature given by Gradient Boosted
Decision Tree(GBDT). The global importance of a feature 𝑗
is given by:

𝐽 2𝑗 =
1
𝑀

𝑀∑
𝑚=1

𝐽 2𝑗 (𝑇𝑚) (1)

Where 𝑀 is the tree number, 𝐽 2
𝑗
(𝑇𝑚) is the importance of

feature 𝑗 in tree𝑚, which is calculated by:

𝐽 2𝑗 (𝑇 ) =
𝐿−1∑
𝑡=1

𝑖2𝑖 I (𝑣𝑡 = 𝑗) (2)

Where 𝐿 is the number of tree nodes, 𝑣𝑡 is the features corre-
lated with node 𝑡 , and 𝑖2

𝑖
is the square loss reduction when

node 𝑡 is split. The selected dimension for each type of fea-
tures is given in Table 2.

• Hybrid. The features’ rank is calculated and averaged for
three methods: Correlation, CHi2, and GBDT. Then the top
rank features were selected.

• Correlation+PCA. Correlation method is applied to select
features according to a settled threshold 0.95, and we use
Principal Component Analysis (PCA) to reduce the dimen-
sions in Photo data. The reduction dimension for Photo data
is selected from 50, 150, 250.

Table 3: Similarity of feature sets generated from different
feature selection methods.

Methods Correlation
and Chi2

Correlation
and GBDT

Chi2 and
GBDT

Similarity 0.6219 0.5159 0.5318

The selected feature sets of different proposed models are par-
tially different. Table 3 summarizes the similarity of our feature sets,
where similarity denotes the fraction of the same selected features
from different methods. The comparison of results from different
methods are discussed in Section 6, and it is shown that all of these
feature selecting methods work well in our task.

5 METHODS
In the original task setting, MART is a retrieval task to retrieve the
most likely instances. Given a query of an activity description, all
instances are required to be ranked by their relevance to the query,
which can be considered as a ranking problem. On the other hand,
as queries are limited in the twenty activity types, the task can be
taken as a multi-label classification problem. Firstly, we prove the
ranking problem is equivalent to the classification problem.

In a multi-label classification problem, for a given instance 𝐼 , the
possibility that 𝐼 belongs to class 𝐴 is 𝑃 (𝐼 ∈ 𝐴) = 𝑃 (𝐴|𝐼 ), which
satisfy that

∑
𝐴 𝑃 (𝐴|𝐼 ) = 1. As for the ranking problem, taken an

activity as a query, the relevance 𝑃 (𝐼 |𝐴) is used to generate rank for
instances. Considering the ranking of instances for a specific query
𝐴𝑖 , the Bayes’s formula gives the ranking relevance of instance 𝐼 𝑗 :

𝑃 (𝐼 𝑗 |𝐴𝑖 ) =
𝑃 (𝐴𝑖 |𝐼 𝑗 )𝑃 (𝐼 𝑗 )∑𝑛

𝑘=1 𝑃 (𝐴𝑖 |𝐼𝑘 )𝑃 (𝐼𝑘 )
(3)

Where 𝑛 is the number of instance. 𝑃 (𝐼𝑘 ) denotes the prior probabil-
ity of 𝐼𝑘 , which is equal to 1

𝑛 for any k. Furthermore,
∑𝑛
𝑘=1 𝑃 (𝐴𝑖 |𝐼𝑘 )

is equal for all instance 𝐼𝑘 with the same 𝐴𝑖 .



As a result, 𝑃 (𝐼 𝑗 |𝐴𝑖 ) is proportional to 𝑃 (𝐼 𝑗 |𝐴𝑖 ) for a given 𝐴𝑖
and any instance 𝐼 𝑗 , so the retrieval task can be solved by optimizing
the ranking problem as well as the classification problem.

Therefore, from these two aspects, we propose two different
approaches. As a ranking problem, we develop similarity-based
methods to calculate the relevance between instances and each
of the 20 activities. As for the classification problem, multi-level
classifiers are designed, where prediction probability for every class
is used for ranking in the final retrieval task. We will introduce
details of the methods in the following subsections.

5.1 Methods for Ranking Problem
The original idea to calculate relevance between instance and activ-
ity is to calculate the similarity between the present instance and
previous instances of this activity, because features are expected
to be similar in the same activity. For a given instance 𝐼 and an
activity 𝐴, we calculate their similarity score in the following steps.

Firstly, we normalize the features and segment an instance into
five feature vectors 𝐼 = [𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5] according to their data
sources: Acceleration, EOG, Heart rate, Photo, and Mouse move-
ment. The segmentation is helpful because different features may
have different importance in similarity prediction.

Secondly, the relevance score 𝑆𝐼 ,𝐼 ′for a given instance 𝐼 and
instance 𝐼 ′ is calculated by

𝑆𝐼 ,𝐼 ′ =

5∑
𝑗=1

𝛼 𝑗 ∗ 𝑖 𝑗
⊗

𝑖 ′𝑗 (4)

where
⊗

denotes similarity functions for two vectors, such as
cosine similarity and Euclidean distance.

Then the similarity score between instance 𝐼 and activity 𝐴 is
given by

𝑆𝐼 ,𝐴 =
∑
𝐼 ′∈𝐴

𝑆𝐼 ,𝐼 ′ + 𝛽 ∗
∑

𝐼 ′′∈𝐴𝑢

𝑆𝐼 ,𝐼 ′′ (5)

where 𝐼 , 𝐼 ′, and 𝐼 ′′ belongs to activity 𝐴, while 𝐼 and 𝐼 ′′ belongs to
the same user 𝑢. In our dataset, there is only one instance in the
latter sum equation.

In practice, we tune the parameters 𝛼 and 𝛽 , and investigate
different similarity functions. According to experiments, we choose
Euclidean distance as our similarity function. And the final vector 𝛼
is [0.5, 3.0, 1.0, 1.5, 0.4], and value 𝛽 is set as 14. The parameters are
explainable, as 𝛼 shows the importance of each data source and 𝛽
suggests that the similarity score of the same user’s instance is more
useful for prediction. The parameter tuning result also inspires us
to design user-specific models in the future.

5.2 Methods for Classification Problem
Based on the selected 556 features in Section 4, we propose an
auto-clustering two-level classifier and a multi-level classifier with
human defined rules.

Firstly, we try some traditional basic classifiers on the selected
features directly and find that several activities are often confused
with each other. Therefore, we conduct a two-level classifier. At
first level, we attempt to partition the activities into subgroups
based on activity similarity, and predict the group label with a basic
classifier. Then second-level classification is implemented within
the group. Because confusing activities are classified respectively

Table 4: Activity groups of three partition methods. The
numbers in the table indicate IDs of activity.

Partition
Method Group 1 Group 2 Group 3 Group 4

Impurity 1,2,11,12 4, 16 others -
Similarity 1,3 2, 11, 12 4, 16 others
Cluster 1,3,5,6,8,10 2,4,11,12,16 7,9,13,14,15 17,18,19,20

Table 5: Performance on basic linear classifiers and tree clas-
sifiers.

Classifier Accuracy mAP(classify) mAP(ranking)
LR 0.825 0.899 0.898
SVM 0.821 0.875 0.848
MLP 0.811 0.890 0.910

Random Forest 0.779 0.869 0.927
XGboost 0.826 0.882 0.921
GBDT 0.836 0.901 0.947

at the second level and we could try different feature combinations
in different basic classifiers, this two-level classifier is expected to
have better performance. A framework with one possible group
partition pattern is shown in Figure 1.

To partition the activities, we consider the following methods:
• Impurity partition. Classification results of a basic 20-label
classifier helps define which activities are easily confused.
Hence, with the results of a 20-label classifier, we recursively
merge the activities into groups (two at a time), with the
goal of minimizing impurity of the partition. Impurity of
partition is defined by the entropy:

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 (𝜋) = −
𝑛 (𝜋 )∑
𝑖=1

𝑛 (𝜋 )∑
𝑗=1

𝑝 (𝐶𝜋,𝑖 𝑗 ) · 𝑙𝑜𝑔2𝑝 (𝐶𝜋,𝑖 𝑗 ) (6)

Where 𝜋 represents the partition pattern, 𝑛(𝜋) means the
number of groups under 𝜋 , and 𝑝 (𝐶𝜋,𝑖 𝑗 ) is the probability
that activities in group 𝑖 is classified into group 𝑗 in the 20-
label classifier. At first, each activity is a single group, and
𝑛(𝜋) is 20. The merging process continues until 𝑛(𝜋) is no
greater than a predefined 𝐾 . For better prediction accuracy,
the unmerged activities are partitioned in one subgroup, as
the example in the framework in Figure 1.

• Similarity partition. Inspired by the methods in Section 5.1,
similarity can also be used for activity partition. The group
similarity is defined as the average similarity of each pair of
instances between the two groups. Starting from 20 separate
groups of activities, a pair of groups with the highest simi-
larity will be merged recursively until 𝐾 groups are left. The
similarity is calculated with equation 4.

• Cluster partition. More straightforward, the activities can be
clustered by their features directly. In this way, the K-means
algorithm is used to cluster all the instances into 𝐾 groups.
Then, the activity is labeled with the group where most of
its instances belong to.
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Figure 2: Architecture of the rule-based multi-level classi-
fier.

The groups generated from all partition methods are shown
in Table 4. It is observed that results of impurity partition and
similarity partition are much the same. The 4th and 16th activities
are grouped together in both methods, and they are both static
activities. And the screen-relevant activities 1,2,3,11,12 also belongs
to the same group(s). These findings illustrate that our partition
methods are helpful, and inspire us to develop methods with these
rules directly.

Accordingly, we further design a rule-based multi-level classifier,
including more human knowledge and predefined rules into the
design. Framework of the rule-based classifier is shown in Figure 2.

The main modifications of this classifier focus on screen-relevant
activities and static activities (defined in Table 1). As we have com-
puter interaction features in dataset, a binary classifier (No.1) is first
imposed to distinguish screen-relevant instances. To be specific,
instances without mouse movement and screenshot data will be di-
rectly determined as screen-irrelevant, and the other instances will
be predicted with a basic binary classifier. For the screen-relevant

instances, if the exact activity class can be estimated by URL in-
formation detected in section 3.4.2, the label of instance will be
determined in classifier No.2. Otherwise, another basic 5-label clas-
sifier No.3 predicts which screen-relevant activity the instance
belongs to.

For the screen-irrelevant instances, we further separate another
special kind of activities, the static activities. Specifically, No.4 is a
binary classifier for static activity distinguish. Then No.5 is a binary
classifiers for identifying static activities 4 and 16, and No.6 is a
13-label classifier for the rest of the activities.

In Section 6, the choice for basic classifiers, feature groups, and
partition methods will be discussed in detail.

6 EXPERIMENTS AND RESULTS
In this section, we conduct extensive experiments to inspect all the
methods proposed in Section 4 and Section 5.

6.1 Experiment Settings
We perform two-fold cross-validation for experiment. Since the
instances with labels contain the first and second repetition of
activities, we pick one as the training set and the other as the
validation set for one time, perform two experiments, and report
the average performance.

Besides, feature group selection is conducted for the multi-level
classifiers. For each basic classifier, subsets of features shown in
Table 2 are used for classification, and the feature subgroup with
the best performance is chosen.

As for the metrics, we report accuracy for activity prediction
for classification problem, and mAP for both problems. Because
there is only one correct result for classification, mAP for classifica-
tion is indeed the average of position reciprocal. For ranking mAP,
there are 7 relevant results for each query (7 participants), and we
performed normalized mAP:

𝑚𝐴𝑃 (𝑟𝑎𝑛𝑘𝑖𝑛𝑔) = 1
𝑛

𝑛∑
𝑖=1

∑7
𝑗=1 1/𝑝𝑜𝑠 (𝑟𝑖, 𝑗 )∑7

𝑖=1 1/𝑖
(7)

Where n is the number of queries, and 𝑝𝑜𝑠 (𝑟𝑖, 𝑗 ) is the position
of the 𝑗𝑡ℎ relevant result for the 𝑖𝑡ℎ query.



Table 6: Overall results of accuracy, classification and ranking mAP of two-fold cross-validation, as well as ranking mAP on
the test set (submission results).

Classifier Accuracy mAP (classify) mAP (ranking) Submission results
Basic GBDT Classifier 0.836 0.901 0.947 0.895

Similarity-based method 0.789 0.843 0.836 0.782
Two-level Classifier
(Impurity partition) 0.875 0.921 0.971 0.901

Two-level Classifier
(Similarity partition) 0.875 0.926 0.970 0.928

Two-level Classifier
(Cluster partition) 0.796 0.880 0.931 0.886

Rule-based Classifier 0.889 0.933 0.974 0.950

Table 7: Accuracy,mAP (classify), andmAP (ranking) for fea-
ture selection methods.

Method Accuracy mAP (classify) mAP (ranking)
None 0.711 0.820 0.879
Chi2 0.879 0.928 0.971

Correlation 0.868 0.923 0.961
GBDT 0.897 0.940 0.973
Hybrid 0.900 0.937 0.972

Correlation
+PCA(50) 0.872 0.920 0.960

Correlation
+PCA(150) 0.889 0.933 0.974

Correlation
+PCA(250) 0.878 0.926 0.973

6.2 Classifier Selection
To start with, a basic classifier should be chosen for the construction
of all models for the classification problem in Section 5.2. There-
fore, we test several common traditional classifiers on 556 features
selected by correlation and PCA dimensionality reduction of 150
dimensions. The results are shown in Table 5.

The tested classifiers can be divided into two types, linear models
and tree models. They gain similar performances on accuracy and
classification mAP, but tree models perform better on the ranking
metric. This indicates that tree models learn the relevance between
activity and instance better, which suggests that tree-based model is
a better composition for the complete multi-level classifier. The ex-
periment result also shows that GBDT (Gradient Boosting Decision
Tree) Classifier performs the best on all three metrics. Therefore,
we choose GBDT as the basic classifier for all classification-related
methods in the following experiments.

6.3 Feature Selection Method
Different feature subsets generated from selection methods in Sec-
tion 4 are tested on the rule-based classifier (Table 7).

The results reveal that different feature selection methods all
perform much better than the features from original dataset (the
method None). However, these methods have no consistent results
on the three metrics, in which GBDT, Merge, Correlation+PCA(150),

and Correlation+PCA(250) methods perform much the same. This
demonstrates that feature selection methods have relatively less
influence on the final results.

Considering that the final task is a retrieval task and feature
dimension should be as few as possible, the Correlation+PCA(150)
method with best mAP(ranking) is used for further explorations.

6.4 Overall Performance
The overall performance of all the models conducted in Section 5
are presented in Table 6. In all, the rule-based classifier performs
the best on all three metrics, which illustrates the validity of our
approaches.

Inspecting other results, we have the following observations.
Firstly, the two-level classifiers based on impurity and similarity
partition have good performance on two-fold cross-validation, but
perform not that well on the test set, which may be the consequence
of overfitting on the training set during the feature group selection
process. On the other hand, the activity partition based on clustering
of features makes the classifier even worse than a basic GBDT,
demonstrating that similarity of original features is not a great
indicator for activity similarity in GBDT-based classification.

In addition, the similarity-based method has poor performance
on both the training set and test set. We inspect the queries with
low accuracy, and find that the main reason is the repetition of
activity might not be all the same. For instance, when Having a
conversation with another person, the participant could be sitting
or pacing, facing the person or backing to the person. Hence, the
similarity-based relevance score can not describe features of some
activities accurately.

Finally, we submitted ranking lists of 20 activities generated from
all the methods on the test set, and the submission results (ranking
mAP on the test set) are displayed in the last column of Table 6.
The best rule-based classifier also achieves the highest score of 0.95
for submission, ranking first among all participant groups.

7 CONCLUSIONS AND FUTUREWORK
In this report, we present our approach for Micro-activity Retrieval
Task. Based on various kinds of feature engineering approaches,
we propose ranking models and classification models for the task.

We first apply various methods to extract features from the multi-
modal data. As the extracted features are too many and diverse,



feature selection is conducted to reduce the dimension of feature.
Then with the proof that ranking problem and classification prob-
lem are equal in our task, we construct a similarity-based ranking
model and a series of classification models.

Abundant experiments are implemented on basic model selec-
tion, feature selectionmethods, and overall performance. The GBDT
is chosen as basic classifier and Correlation+PCA is chosen for fea-
ture selection. Overall performance shows promising results of our
models. On the test set, the ranking model shows an mAP of 0.782,
and the classification models achieve mAP of at least 0.88. Among
them, the rule-based classifier reaches an mAP of 0.95, ranking
first of all the models. The results indicate the utility of our feature
engineering methods and classification models, and also illustrate
the possibility to detect human micro activities with sensor data.

Although the idea that instance of one activity should be similar
is intuitive, the performance of our similarity-based model was
worse than the tree-based model. Since the activities are too similar
and the recorded time is too short, our simple model can’t solve the
ranking problem well. For future work, models based on this idea
can be further studied since it is more intuitive and explainable.

Moreover, detailed explanations of classification results (or re-
trieval relevance) can be a direction. Understanding the prediction
procedure may help improve the performance of model, as well as
help people comprehend the character of human activity. Finally,
the cold-start participants can be introduced into the experiments.
It is an important application to predict activities of a user without
much knowledge about the user.
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