
A Difficulty-Aware Framework for
Churn Prediction and Intervention in Games

Jiayu Li1, Hongyu Lu1, Chenyang Wang1, Weizhi Ma1, Min Zhang1∗, Xiangyu Zhao2, Wei Qi2,
Yiqun Liu1, and Shaoping Ma1

1Department of Computer Science and Technology, Institute for Artificial Intelligence, Beijing National Research Center
for Information Science and Technology, Tsinghua University, Beijing, China

2Beijing Microfun Co.Ltd
{jy-li20,luhy16,wangcy18}@mails.tsinghua.edu.cn,mawz12@hotmail.com,{z-m,yiqunliu,msp}@tsinghua.edu.cn

{xiangyu.zhao,victor.qi}@microfun.com

ABSTRACT
User’s leaving from the system without further return, called user
churn, is a severe negative signal in online games. Therefore, churn
prediction and intervention are of great value for improving play-
ers’ experiences and system performance. However, the problem
has not been well-studied in the game scenario. Especially, some
crucial factors, such as game difficulty, have not been considered for
large-scale churn analysis. In this paper, a novel Difficulty-Aware
Framework (DAF) for churn prediction and intervention is pro-
posed. Firstly, a Difficulty Flow for each user is proposed, which is
utilized to derive users’ Personalized Perceived Difficulty during
the game process. Then, a survival analysis model D-Cox-Time is
designed to model the Dynamic Influence of Perceived Difficulty
on player churn intention. Finally, the Personalized Perceived Diffi-
culty (PPD) and Dynamic Difficulty Influence (DDI) are incorporated
to churn prediction and intervention. The proposed DAF framework
has been specified in a real-world puzzle game as an example for
churn prediction and intervention. Extensive offline experiments
show significant improvements in churn prediction by introducing
difficulty-related features. Besides, we conduct an online interven-
tion system to adjust difficulty dynamically in the online game.
A/B test results verify that the proposed intervention system en-
hances user retention and engagement significantly. To the best of
our knowledge, it is the first framework in games that illustrates
an in-depth understanding and leveraging dynamic and personal-
ized perceived difficulty during game playing, which is easy to be
integrated with various churn prediction and intervention models.
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Figure 1: An illustration of perceived difficulty and its dy-
namic influence on churning. The User Effort indicates
time/experience that the user pay for the game. And the
Game Challenges denotes global difficulty of the game.

1 INTRODUCTION
User Churn is a severe negative user feedback in online games,
which means the user leaves this system and will not return for a
long time. Hence effective user churn prediction and intervention
are crucial in game scenarios.

Previous churn prediction studies in game scenario either apply
existing methods with churn-related features in game [3, 4, 23], or
analyze players’ overall behaviors [17, 32]. However, they pay little
attention to understanding and applying game-specific factors, such
as game difficulty, for churn prediction. For churn intervention, ad-
justment difficulty is used intuitively. However, dynamic difficulty
adjustment is usually conducted depending on explicit user feed-
back via questionnaires or manually constructed rules [6, 20, 31],
which is impractical for real-world applications.

Therefore, we aim to analyze the difficulty factor in game thor-
oughly for predicting and preventing user churn with large-scale
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logs in a general framework. To model player’s perception of diffi-
culty, previous work has measured it by the efforts (e.g. time/trials
in the game) by users [2, 6, 13]. However, as the expectation of
effort is personalized, the perceived difficulty of each user can be
distinct. For instance, spending the same time, casual players will
lose patience quickly, while serious players with a clear goal to
achieve will endure it for leveling up.

Further, the influence of difficulty on user churn intention is
dynamic, varying with different phases in playing [21]. Intuitively,
receiving the same perceived difficulty will lead to different impact
on user churn. For example, beginners are more sensitive to diffi-
culty, easily deterred by failures in games. As players get familiar
with the game, their tolerance for difficulty may promote.

Figure 1 illustrates the modeling of Personalized Perceived Dif-
ficulty (PPD) and its Dynamic Difficulty Influence (DDI). From the
behavior logs of player, user efforts and corresponding game chal-
lenges are extracted and fit a Personalized Difficulty Flow to obtain
expected efforts, as shown by the blue lines in the figure. Then, PPD
is obtained by the gap between actual and expected efforts (Figure
1(b,c)). Users may churn because the game is too easy (User A) or
too hard (User B), and the shadow in Figure 1(a) indicates the churn
probability (i.e. DDI). Generally, churn probability is high when
PPD is extreme, and the influence is changing with time.

Based on the above motivation, we propose that difficulty, espe-
cially the perceived difficulty and its dynamic influences for each
user, should be considered for churn prediction and intervention.
Therefore, we design a novel Difficulty-Aware Framework (DAF).
The basic idea of the framework is to propose a general method
to generate difficulty-related features. Then, the features will con-
tribute to both churn prediction and intervention tasks in game.

The proposed framework mainly consists of three modules: Per-
sonalized Perceived Difficulty (PPD) modeling, Dynamic Difficulty
Influence (DDI) modeling, and Churn prediction and intervention.
Firstly, the PPD is generated from the gap between actual efforts
and expected efforts from user interaction history, where Flow the-
ory [27] is used for modeling personalized differences in difficulty
perceiving. Then, the Dynamic Difficulty Influence of PPD on user
churn at different phases is modeled. Inspired by survival analysis,
we propose a time-dependent survival model, D-Cox-Time, which
incorporate PPD in modeling probability of churn through time,
and reflect the DDI in our framework. At last, PPD and DDI-related
features are applied to churn prediction and intervention tasks.

A specification of the proposed framework for a real-world game
is conducted, and experimental results on both churn prediction
and intervention tasks achieved good performance. Offline experi-
ments of churn prediction show that difficulty-related information
improves prediction performance significantly. The online A/B test
results confirm that the intervention on difficulty optimizes user
retention and engagement significantly.

To sum up, our main contributions are as following:

• We are the first to propose a Difficult-Aware Framework
for churn prediction and interventions in games, in which
the Personal Perceived Difficulty and its Dynamic Difficulty
Influence are applied to generate features for both churn
prediction and intervention tasks. The framework is capable
for working for different online games.

• In the proposed framework, personalized difficulty flow and
a time-dependent survival analysis model D-Cox-Time are
designed to detect users’ personalized difficulty and model
its dynamic influence for churn.

• A specialization of the framework for a real-world game is
conducted, which performs well on both churn prediction
task and online churn intervention task. Open source of of-
fline dataset is in https://github.com/THUIR/DAF-for-churn.
To the best of our knowledge, this is the first large-scale
public available dataset involving detailed interaction logs
in the game scenarios.

2 RELATEDWORK
2.1 Difficulty in Games
Difficulty is one of the essential concepts in game [25]. Many re-
searchers have studied the definition and detection of it. Juul [13]
conducted offline and online user studies in video game to detect the
complex meaning of difficulty. Constant and Levieux [6] studied the
relation between objective and subjective evaluation of difficulty.
Recently, neural networks were also used to detect global difficulty
in game [22]. Based on the detection of difficulty, various user stud-
ies in psychology and computer science scenarios were conducted
to inspect its influence on user motivation and engagement [17, 21].
These works clarify the definition of difficulty in game, and verify
strong relation between difficulty and user experience.

Another view for detecting difficulty in game comes from the
flow theory. Flow is a commonly used concept in psychology, which
describes the mental state of full immersion and focus while doing
a task [8]. In 2005, Dweck and Elliot [9] postulated the Flow The-
ory that one must have a delicate balance between the time/skill
required (i.e., challenges or difficulty) in the task and their own
skills in order to achieve the Flow state. In the game scenario, some
small-scale user studies have indicated the Flow exists in the video
games [7, 27], and out-of-flow interactions will influence player’s
confidence [6].

However, these works usually ignore the personalized experi-
ences of difficulty in games. Futhermore, none of them tried to
model the Flow from user interactions explicitly. Differently, our
framework focuses on modeling personalized perceived difficulty
from historical interactions of each user.

2.2 Churn Prediction in Games
Prediction of churn is a crucial task in game scenario, where users’
history log data is modeled with various classification algorithms.
Some works combined existing models with churn-related features
in game. Traditional classifiers with some game-specific features
were applied to predict churn in games [3, 23]. Bonometti et al.
[4] employed deep neural networks and proposed a Bifurcating
Model Framework to model early user-game interactions. Liu et al.
[16] proposed a deep semi-supervised model to analyze micro-level
churn prediction and macro-level churn rankings in large gaming
platforms. Others conducted valuable analysis on user behaviors
in game to explain the predictions. Lomas et al. [17] inspected
the relationship between challenge and user engagement. Yang
et al. [32] conducted user clustering by early behaviors and made
predictions with user type attention network.



Table 1: Notations of primary concepts used in this paper.

Notation Explanation
®𝑒𝑖 Actual efforts sequence for user 𝑢𝑖 . 1
®̂𝑒𝑖 Expected efforts sequence for user 𝑢𝑖 .
®𝑐𝑖 Game challenges sequence for user 𝑢𝑖 .
𝑿 𝒊 Other basic covariates for user 𝑢𝑖 .
®𝐷𝑖 Personalized Perceived Difficulty sequence for user 𝑢𝑖 .
®𝛽 (𝑡) Dynamic Difficulty Influence vector at time t.
h(t) Churn risk by survival analysis at time t.

1 The jth dimension of the vector is represented with a second subscript, i.e. ®𝑒𝑖,𝑗 .

Churn prediction is also widely studied in various scenarios,
such as social applications [32], telecommunication [1], and finan-
cial services [30]. Usually, popular machine learning methods are
integrated with scenario-specific elements for churn prediction in
these works.

Instead of proposing one specific churn predictionmodel in game,
we focus on modeling the important factors, personalized perceived
difficulty and its dynamic influence, and propose a framework that
can be incorporated into various models.

2.3 Churn Intervention in Games
Besides churn prediction, churn intervention is a further task in
application, which aims to optimize user retention by adjusting
features in the games. Considering the operational feasibility, pre-
vious works usually conducted intervention by dynamic difficulty
adjustment (DDA). In DDA, game designers aim to keep players
engaged continuously by balancing an accurate level of difficulty.
Early works employed probabilistic models in DDA and tried to
gain local optimum for user engagement [5, 31]. Later, methods
from machine learning are applied to DDA. For instance, reinforce-
ment learning is used to develop adaptive AI in games [26, 28].
Recently, Pfau et al. [20] present a Deep Player Behavior Modeling
strategy to adjust the difficulty with a more complex deep model.

However, these adjustment methods usually need ground truth
for difficulty, or depend on manually designed assumptions on spe-
cific features about game, which is impractical for large-scale online
game applications. In our work, the Dynamic Difficulty Influence is
used for adjusting difficulty in real time for online scenario.

3 DIFFICULTY-AWARE FRAMEWORK FOR
CHURN

3.1 Task Definition and Notations
We give the definitions of the two tasks and notations firstly.

Churn Prediction Task. Given user 𝑢𝑖 and interaction behav-
ior history ®𝐵𝑖 = 𝑏𝑖,1, 𝑏𝑖,2, ..., 𝑏𝑖,𝑇𝑜 in the observation window of
length 𝑇𝑜 , the churn prediction task is to predict the probability
𝑃 (𝑐ℎ𝑢𝑟𝑛 | ®𝐵𝑖 ) that𝑢𝑖 will churn, i.e. have no interactions in the detec-
tion window period 𝑇𝑑 . The window size 𝑇𝑜 and 𝑇𝑑 are pre-defined
due to specific scenario, which can vary from one day to a month.

Churn Intervention Task. Given behavior status 𝑏𝑖 for user
𝑢𝑖 and an action space 𝐴 for all possible adjustment in system, the
churn intervention aims to minimize the churn probability by con-
ducting the proper action from 𝐴: 𝑎 = argmin𝑎∈𝐴 𝑃 (𝑐ℎ𝑢𝑟𝑛 |𝑏𝑖 , 𝑎).

Notations. The main concepts used in this paper are displayed
in the Table 1. Detailed derivation and explanation of these concepts
are introduced in the following subsections.

3.2 Framework Overview
We design the Difficulty-Aware Framework for churn prediction
and intervention (DAF), which aims at predicting and intervening
player churn in games by modeling personalized difficulty and its
influence on churn.

The overall structure of DAF is shown in Figure 2. The frame-
work consists of threemodules: Personalized Perceived Difficulty (PPD)
modeling module, Dynamic Difficulty Influence (DDI) modeling
module, and Churn prediction and intervention module. Here we
give an overview of them, and the details of the three modules will
be introduced later.

In PPD modeling module, given historical interaction logs of a
player, game challenges and user efforts are extracted for modeling
a Personalized Difficulty Flow, which outputs the PPD sequence ®𝐷 .
Then, in DDI modeling module, ®𝐷 are embedded and integrated
with basic churn-related features along time to compute dynamic
influence on churn. The DDI model is based on D-Cox-Time, a
difficulty based variant of Cox-Time [15]. It includes parameter
matrixes 𝐴 ∈ R𝑃𝑥𝑇 and 𝐵 ∈ R𝑀𝑥𝑇 to describe the global dynamic
influence from basic features (of size 𝑃 ) and perceived difficulty (of
size 𝑀) on churn hazard from time 1 to T, respectively. Dynamic
influences, along with basic hazard ℎ0 (𝑡), are updated with inputs
and churn labels of every user. DDI are derived from 𝐵. Finally,
PPD and corresponding DDI are incorporated in churn prediction
classifiers and churn intervention system.

With pre-defined clarifications for each module (described in
each section) based on game settings, our framework can be applied
to various online games. As an example, a puzzle game specification
of DAF is described in Section 4.

3.3 Personalized Perceived Difficulty Modeling
At the first step, we try to model users’ PPD with the gap between
their actual and expected efforts from historical interactions, as
shown in the top-middle part of Figure 2.

With interaction logs of a user as input, user efforts and game
challenges are extracted based on predefined specifications. Then
the linear relation between user efforts and the game challenges is
modeled with Personalized Difficulty Flow, which is used to generate
personalized expected efforts. The gaps between users’ actual effort
and expected efforts form the output PPD.

To formalize, for user 𝑢𝑖 , given the historical sequence of ef-
forts ®𝑒𝑖 on all levels she has played, and the corresponding game
challenges ®𝑐𝑖 , linear regression is applied to model the Flow

®𝑒𝑖 = 𝑎𝑖 ∗ ®𝑑𝑖 + 𝑏𝑖 (1)

Where 𝑎𝑖 and 𝑏𝑖 are the slope and intercept to describe the Personal-
ized Difficulty Flow for 𝑢𝑖 . Then, at any level 𝑑𝑖, 𝑗 , we can obtain the
personalized expected effort from the Personalized Difficulty Flow,
𝑒𝑖, 𝑗 = 𝑎𝑖 ∗ 𝑐𝑖, 𝑗 + 𝑏𝑖 . PPD 𝐷𝑖, 𝑗 is denoted by the difference between
user’s actual effort 𝑒𝑖, 𝑗 and expected effort 𝑒𝑖, 𝑗 :

𝑃𝐷𝑖, 𝑗 = 𝑒𝑖, 𝑗 − 𝑒𝑖, 𝑗 = 𝑒𝑖, 𝑗 − (𝑎𝑖 ∗ 𝑐𝑖, 𝑗 + 𝑏𝑖 ) (2)
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Figure 2: The Difficulty-Aware Framework (DAF) for churn prediction and intervention. Personalized Perceived Difficulty is
modeled with Personalized Difficulty Flow, and Dynamic Difficulty Influence is obtained from D-Cox-Time model. Then the
information about difficulty is incorporated in churn prediction and intervention tasks.

Specification needs to be defined for efforts 𝑒 and game chal-
lenges 𝑐 in applications. The user effort 𝑒 reflects personalized
experience, such as time, money, or trials at the level. The game
challenge 𝑐 indicates global difficulty, such as level, average effort
of all users, or manually-designed difficulty scales.

3.4 Dynamic Difficulty Influence Modeling
With a clear definition of PPD, we further take into consideration
the Dynamic Difficulty Influence on players’ churn. To perceive an
explainable result, we propose a time-dependent difficulty-aware
survival analysis model, D-Cox-Time, to describe the DDI, as shown
in the bottom-middle in Figure 2.

Survival analysis is a common methodology for time-to-event
prediction, modeling the risk of the event dynamically [14]. The goal
for survival analysis is to model the probability of event happening
as a function of time 𝑃 (𝑇 ∗ ≤ 𝑡), where 𝑇 ∗ is the event happening
time. Generally, the event hazard rate ℎ(𝑡) is commonly used to
specify models, which is defined by the derivative of probability
𝑃 (𝑇 ∗ ≤ 𝑡). For an in-depth overview of survival analysis, please
refer to the book by Klein and Moeschberger [14].

For modeling the dynamic influence in DAF, we conduct a
difficulty-aware time-dependent survival model D-Cox-Time, fol-
lowing the model Cox-Time [15]. Grain for time points can vary
with applications, such as interaction-level, session-level, and even
day-level. To describe delicate influence of PPD on churn at each
time point, we conduct discretization and one-hot embedding for
𝑃𝐷𝑖,𝑙𝑡 into pre-defined𝑀 dimensions, where 𝑙𝑡 is the level that user
𝑢𝑖 plays at time 𝑡 .

Given the length of time sequence𝑇 , embedding for ®𝐷𝑖 ∈ R𝑀∗𝑇 ,
basic covariates 𝑿 𝒊 ∈ R𝑃∗𝑇 (predefined information related to
churn), the D-Cox-Time estimates the dynamic churn hazard for

user 𝑢𝑖 at time 𝑡 (𝑡 ≤ 𝑇 ) as ℎ(𝑡 |𝐷𝑖,𝑙𝑡 ,𝑿 𝒊):

ℎ(𝑡 |𝑿 𝒊, 𝐷𝑖,𝑙𝑡 ) = ℎ0 (𝑡) ∗ 𝑒𝑥𝑝{
𝑀∑
𝑗=1
I[ 𝑗−1

𝑀
,
𝑗

𝑀
] (𝐷𝑖,𝑙𝑡 ) ∗ 𝛽 𝑗 (𝑡)

+
𝑃∑
𝑗=1

𝑋𝑖, 𝑗 (𝑡)𝛼 𝑗 (𝑡)}

:=ℎ0 (𝑡) ∗ 𝑒𝑥𝑝{𝑔(𝐷𝑖,𝑙𝑡 ,
®𝑋𝑖 (𝑡), ®𝛽 (𝑡), ®𝛼 (𝑡)}

(3)
Where ®ℎ0 ∈ R𝑇 , 𝛼 ∈ R𝑃∗𝑇 and 𝛽 ∈ R𝑀∗𝑇 are parameters to

learn. ℎ0 (𝑡) is the global baseline hazard at time t, indicating the
overall churn intention. 𝛽 𝑗 (𝑡) and 𝛼 𝑗 (𝑡) are time varying influence
on churn risk at time 𝑡 , from each of the difficulty 𝐷𝑖,𝑙𝑡 and basic
features 𝑋𝑖, 𝑗 , separately. And I is the indicator function, illustrating
the process of one-hot embedding.

At last, the DDI is indicated by the parameters 𝛽 𝑗 (𝑡), where
larger value of 𝛽 𝑗 (𝑡) illustrates higher risk for churn, thus larger
influence. A mapping function 𝑓 is established between ®𝐷 and 𝛽 :

𝑓 (𝐷𝑖,𝑙𝑡 , 𝑡) = 𝛽𝑘 (𝑡) (4)

Where 𝑘 is the high bit in one-hot embedding of 𝐷𝑖,𝑙𝑡 .
For training D-Cox-Time, the loss function is defined

𝑙𝑜𝑠𝑠 =
1
𝑛

∑
𝑖

𝑙𝑜𝑔(
∑
𝑗 ∈𝑅𝑖

𝑒𝑥𝑝 [𝑔( ®𝑋 𝑗 (𝑡), 𝐷 𝑗,𝑙𝑇𝑖
, ®𝛽 (𝑡), ®𝛼 (𝑡))

− 𝑔(𝐷𝑖,𝑙𝑇𝑖
, ®𝑋𝑖 (𝑡), ®𝛽 (𝑡), ®𝛼 (𝑡))])

(5)

Where 𝑇𝑖 denotes the churn time for user 𝑢𝑖 , and 𝑅𝑖 is a sampled
subset of users at risk at time 𝑇𝑖 (i.e. users not churned before time
𝑇𝑖 ). It has been proved that loss on 𝑅𝑖 is a good approximation of



loss on all users at risk, and the loss on subset reduces the time
complexity of the time-dependent model significantly[15].

To carry out the DDI modeling, settings that should be speci-
fication includes: grain for time points; maximum length 𝑇 ; basic
churn-related covariates 𝑿𝑖 ; one-hot embedding dimension𝑀 .

3.5 Churn Prediction and Intervention
In the end, we incorporate our in-depth modeling of PPD and DDI
in churn prediction and churn intervention tasks, illustrated in the
right part of Figure 2. As a framework, our methods can be used in
various models for churn prediction and intervention.

Churn Prediction. Following definitions in Section 3.1, we for-
malize the churn prediction that considers difficulty information:

Given behavior history ®𝐵𝑖 for user 𝑢𝑖 , the basic information
𝑿𝑖 , PPD ®𝐷𝑖 , and DDI ®𝛽𝑖 are generated as features. Specifically, ®𝛽𝑖
indicates the corresponding Dynamic Difficulty Influence to ®𝑃𝐷𝑖 cal-
culated from mapping function 𝑓 (equation 4). Then we predict the
churn probability with a classifier𝑀 for different combinations of
features: 𝑃𝑀 (𝑐ℎ𝑢𝑟𝑛 |𝑿𝑖 ), 𝑃𝑀 (𝑐ℎ𝑢𝑟𝑛 |𝑿𝑖 , ®𝑃𝐷𝑖 ), and 𝑃𝑀 (𝑐ℎ𝑢𝑟𝑛 |𝑿𝑖 , ®𝑃𝐷𝑖 , ®𝛽𝑖 ).

The accuracy of prediction with different feature combinations
can be calculated with various existing classifiers to verify the
reliability of difficulty-aware modeling in DAF.

Churn Intervention. For churn intervention, we aim at pro-
viding proper difficulty to optimize user retention and engage-
ment. Since the intervention is personalized and conducted in real
time, Personalized Difficulty Flow is fit with early behaviors of each
user (eq 1). And the DDI 𝜷 is also pre-trained with D-Cox-Time.

Then, we perform the churn intervention system in a greedy
way, i.e., minimizing churn hazard ℎ(𝑡) at each time point 𝑡 .

For user 𝑢𝑖 , given an adjustment space for user effort at time t
𝑒𝑖,𝑡 : 𝐸 = {𝑒1, 𝑒2, ...𝑒𝑛}, the best effort is optimized with

𝑒𝑖,𝑡 = argmin
𝑒𝑘 ∈𝐸

ℎ(𝑡 |𝐷𝑖,𝑙𝑡 ,𝑿 𝒊) = argmin
𝑒𝑘 ∈𝐸

𝑔(𝐷𝑖,𝑙𝑡 ,
®𝑋𝑖 (𝑡), 𝛽 (𝑡), 𝛼 (𝑡))

= argmin
𝑒𝑘 ∈𝐸

𝑓 (𝐷𝑖,𝑙𝑡 , 𝑡) = argmin
𝑒𝑘 ∈𝐸

𝑓 (𝑒𝑘 − (𝑎𝑖 · 𝑐𝑖 (𝑡) + 𝑏𝑖 ), 𝑡)

(6)
The adjustment space E is defined by game designers. For in-

stance, it can be difficulty scales at the level, the number of help
provided in the level, or success and failure at each trial.

The churn intervention system is flexible to expand to various
online games, and it is well-adapted for real-time adjustment as the
computational complexity is low.

4 SPECIFICATION IN A TILE-MATCHING
PUZZLE GAME

As illustrated in Section 3, DAF is easy to incorporate in various
games. In this section, we conduct a specification of DAF in a real-
world tile-matching game. Definition of concepts in difficulty-aware
modeling is meanly displayed in Section 4.2, and experimental
settings for churn are proposed in Section 4.3.

4.1 Dataset Collection
We collected anonymous data from a real-world tile-matching puz-
zle mobile game. This game is split to more than a thousand levels,
which must be completed in sequence. At each level, users are posed

with a puzzle and a goal (e.g., achieving a minimum score in a fixed
period). If the players meet the goal, they will unlock the next level.
Otherwise, they will lose energy in game and have to try again.

5000 new players who registered from Feb 1, 2020 to Feb 8, 2020
were selected, and their behavior data in the next two months was
collected. After filtering players with less than 3 days of login data,
4089 users remained. There are 4,517,349 interaction records in the
behavior logs in total, 1104 interactions for each user on average.
The highest level played by user varies from 5 levels to 988 levels,
with around 224 levels on average. Since the challenges in this
game are represented by different levels, we mix the statement of
“challenge” and “level” in the following description.

After removing the sensitive information about user privacy, we
provide the behavior logs and codes of our experiments, to support
further researches on games and difficulty 1.

4.2 Specification of DAF
The grain for time points is set to day-level for D-Cox-Time and
churn prediction, since we consider the daily user churn event in
the following experiment. The period of detection window is set
as 𝑇𝑑 = 7 days and observation window 𝑇𝑜 = 30 days. Under this
setting, there are 2239 churned users and 1850 retained users.

4.2.1 Specification on Personalized Perceived Difficulty. According
to Section 3.3, we define the game challenges and user efforts to
specify PPD with Personalized Difficulty Flow in the dataset. Since
users usually will not re-play a level once they pass it, we use
the retry times (i.e., number of playing until success) at each level
to represent the difficulty, following previous works in difficulty
analysis [31]. The game challenge at each level is indicated with
average retry times of all users who have played the level. The
higher the average retry times are, the more challenging the level
should be. The user effort is represented by the user’s own retry
times, which reflects her effort paid at the level.

4.2.2 Specification on Dynamic Difficulty Influence. As illustrated
in Section 3.4, to specify D-Cox-Time on the dataset, we clarify
definition of basic covariates𝑿𝑖 and embedding dimension𝑀 for𝐷𝑖 .
Since we consider the day-level user churn event in our experiment,
covariate features 𝑿𝑖 for D-Cox-Time is extracted from each day
of logs. To be specific, 𝑃 = 14 basic features are collected for each
day from user behavior logs (as shown in Table 2), most of which
are not game-specific. Following previous works on games [19],
we categorize these features into five groups, and the period for
ending a 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 is set as 30 minutes without interactions.

Average of PPD at all levels at day 𝑡 is calculated for 𝐷𝑖,𝑡 . Em-
bedding dimension𝑀 is set to 10.

Finally, the DDI is represented by 𝛽 𝑗 (𝑡), where 𝑗 ∈ [1, 𝑀] and
𝑡 ∈ [1,𝑇 ] (𝑀 = 10, 𝑇 = 30).

4.3 Experimental settings
Experimental settings for churn prediction and intervention are
determined according to definitions in Section 3.5.

4.3.1 Settings for Churn Prediction. Features, classifiers, and eval-
uation protocols are set for churn prediction.

1https://github.com/THUIR/DAF-for-churn



Table 2: Basic Covariates for survival analysis in D-Cox-
Time.

Feature Type Feature Description

Playing
intensity

Session num Number of sessions
in the day.

Played num Number of plays
in the day/last sessionLast session play

Played levels Number of levels played
in the day/last sessionLast session level

Player
attention

Game time Play time (seconds) in
the day/last sessionLast session time

Session length Average number of plays
per session in the day

Player
loyalty

Help num Number of helps used
in the day/last sessionLast session help

Purchase amount Amount of purchase
in the day

Context Weekday Day of week
Last session
end hour

End hour of
the last session.

Player level Player level Highest level in the day

Table 3 summarizes the features for churn prediction. Basic fea-
ture categories are almost the same as basic covariates in 𝐷 −𝐶𝑜𝑥 −
𝑇𝑖𝑚𝑒 (Table 2), except that the features are pooled in the observa-
tion window for non-sequence prediction models. (Average over all
days and sum of purchase num are considered in pooling), and the
original sequence is used for sequential classifiers. The Difficulty
category contains information from modeling of Difficulty Flow:
the game challenges, user efforts, and PPD. And the DDI category
considers information from influence matrix 𝜷 of D-Cox-Time.

As our main goal is to verify the difficulty-related features, but
not to propose new models for churn prediction, we follow the
previous works[23, 24, 29], and use four types of traditional classi-
fication models for the churn prediction task:

1) Basic model: logistic regression (LR) and support vector ma-
chines (SVM).

2)Deepmodel: MultiLayer Perceptron (MLP) and DeepFM [11].
3) Sequantialmodel: Long Short-TermMemory(LSTM) [10]. (Fea-

ture sequence of each day in user behavior logs is used as input.)
4) Ensemble model: random forest (RF) and Gradient Boosting

Decision Tree (GBDT).
Five-fold cross-validation is conducted for evaluation. D-Cox-

Time is pretrained only on training set. AUC, accuracy (ACC), and
F1 value are used as evaluation metrics.

4.3.2 Online Intervention System Construction. For online churn
intervention, we make some modifications on pretrain of PPD an
DDI, and then adjustment space 𝐸 is specified.

We focus on intervention for new users in the online experiment.
The PPD for each new user is modeled with their interactions at
beginning. Since intervention should be conducted at each interac-
tion, D-Cox-Time is trained on interaction grain for DDI on online
data of 20,000 new users, and the end of session is set as label.

With the pre-trained Difficulty Flow for PPD and D-Cox-Time
for DDI, adjustment space 𝐸 consists two states: 𝐸 = {𝑒𝑝 , 𝑒𝑓 }, 𝑒𝑝

for passing the current level, and 𝑒𝑓 for failing. The proper state at
each interaction is chosen by optimization in Equation 6.

A/B test [12] is used for online performance evaluation. Exper-
imental group and control group randomly selected 30,000 new
users from the system, respectively who registered at the same day.
During a period of 10 days, users in experimental group received
the intervention based on awareness of difficulty by the proposed
DAF, and users in control group have no adjustment. The settings
for experimental group and control group are all the same.

Experimental results will be shown in Section 6.

5 ANALYSIS ON DIFFICULTY MODELING
In this section, we analyse the PPD and DDI from difficulty model-
ing of the offline dataset.

5.1 Analysis on Personalized Perceived
Difficulty

According to Equation 1, the Personalized Difficulty Flows for all
users are fit from their historical interactions in the 30-day observa-
tion window under settings in Section 3.3. The average coefficient
of determination 𝑅2 = 0.617 (high goodness of fit[18]), indicating a
good linear relation between game challenges and user efforts.

The distribution of personalized slopes 𝑎𝑖 is shown in Figure 3.
Users are grouped into three phases according to their highest level.
The distribution, peak value, mean value (𝜇), and variance (𝜎2) are
shown. A smaller value of 𝑎 indicates a preference for easier games.

For most users, the slopes 𝑎 for Personalized Difficulty Flow are
positive, and the distribution of 𝑎 is clumping to median as players
get experienced. It indicates there are positive proportional correla-
tions between effort and game challenge for most users in all phases,
centralizing slopes in the range of (0,1), which confirms the settings
of Flow. Distributions in all three phases are single-peaked. As users
get familiar with the game, the peak of distribution is approach-
ing its mean value, and the variance of slopes is decreasing. At
fresh-man phase, the peak value is small, and players’ Personalized
Difficulty Flows are diverse. It illustrates generally players prefer
easier games at the beginning, but players who prefer easy or hard
games are both at scale. As players get experienced at the game,
most users tend to have a balanced relation between challenges and
efforts, and the distribution is approaching a Normal Distribution.

5.2 Analysis on Dynamic Difficulty Influence
We perform training of D-Cox-Time in Section 3.4 on the whole
offline dataset, and analyze 𝛽 from overall and time-various aspects.

First, the mean values and variances for DDI, i.e 𝛽 𝑗 (𝑡) are shown
at 𝑀 = 10 different bins of PPD in Figure 4. Larger value of 𝛽
indicate greater probability to churn. It illustrates the tendency that
the average churn risk is lower when the PPD is close to 0, i.e., the
user’s actual effort matches her expected effort. And the hazard is
high when PPD is too small (too easy) or too large (too difficult).

Then we inspect how the DDI 𝜷s change through time. To better
understand the shift, the 𝑀 = 10 PPD bins are grouped into 3
ranges, and the observation window is divided into three phases:
less than 10 days, 10 days to 20 days, and more than 20 days.

The average value for 𝜷 along PPD and time are shown in Table
4. It illustrates that the influences change through time in all ranges



Table 3: Features for churn prediction. For sequentialmodels in Section 4.3, the features are extracted per day. For othermodels,
the day-level features are averaged through the whole observation window.

Category Feature Type Feature Description

Basic

Playing intensity Session num, Played num, Played levels,
Login Frequency Same to Table 1.

Player attention Game time Same to Table 1.

Player loyalty Help num, Purchase num Same to Table 1.

First purchase interval, Last purchase interval Days from registration to
the first/last purchase.

Player level Player level Highest level ever played.

Difficulty
Game Challenges Average game challenges, game challenges variance,

Last-day game challenges
Mean and variance of game challenges per day

/ at the day before churn.

User Efforts Average effort, Effort variance, Last-day effort Mean and variance of effort per day
/ at the day before churn.

PPD Average PPD, PPD variance, Last-day PPD Mean and variance of PPD per day
/ at the day before churn.

DDI Beta Average Beta, Beta variance, Last-day Beta Mean and variance of Beta coefficients per day
/ at the day before churn.
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Figure 3: Distribution of slope 𝑎 for users in three phases.
The distribution of slopes centralizes in the range (0,1).
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Figure 4: Average and variances of churn risk (in terms of 𝛽 ,
eq 3) for each bins for Personalized Perceived Difficulty. The
churn risk is high when PPD is too low or too high.

Table 4: The change of churn risk(in terms of 𝛽) through
time, where higher value means higher risk to churn.

PD < -0.4 -0.4≤PD<1.3 PD≥1.3
<10 days 0.053 0.081 0.160
10 days - 20 days 0.230 -0.065 0.149
≥20 days 0.183 -0.542 0.272

of 𝑃𝐷s. From the specific values, it can be found that when actual
effort matches the user’s expected effort (i.e., 𝑃𝐷 near 0), the user
is less likely to churn, especially at long phase. At the beginning,
feeling easy or exact matching has little influence on churn, but too
difficult games increase users’ probability to churn. Later, feeling
too easy or too difficult will both lead users to churn, while in the
median phase, feeling easy is riskier to churn, but hard games are
more harmful in the longer phase.

6 CHURN PREDICTION & INTERVENTION
RESULTS

6.1 Churn Prediction Results
For churn prediction, hyper-parameters of all seven models in Sec-
tion 4.3 are carefully tuned on the dataset, and the best hyper-
parameters are recorded in our codes1. Results with the highest
AUC value are reported in Table 5.

From the results, it can be concluded that adding features in Dif-
ficulty and DDI categories improve the performance of prediction
models. The improvements of AUC are significant for both cate-
gories in almost all models except LR. Therefore, the results indicate
that incorporating the proposed Personalized Perceived Difficulty
and Dynamic Difficulty Influence can improve the prediction perfor-
mance for user churn. Especially, in LSTM, adding features in DDI
enhance the performance the most among all models, from 0.913
to 0.953 (+4.0%), which indicates that DDI is suitable for prediction
of sequential model. This may because the DDI information comes

1https://github.com/THUIR/DAF-for-churn



Table 5: Overall performance of different models on differ-
ent features. ’+ DIF’ means adding features in the Difficulty
category. ’+ DDI’ indicates adding features in the DDI cate-
gory. Paired t-test is conducted on the results. * and ** denote
the statistical significance for 𝑝 < 0.05 and 𝑝 < 0.01 respec-
tively, compared to the previous feature group in the same
model. And the models are optimized with the best AUC.

Model Features AUC ACC F1
Basic 0.868 0.781 0.800

LR Basic + DIF 0.908** 0.837** 0.848**
Basic + DIF + DDI 0.914* 0.842 0.851
Basic 0.834 0.834 0.846

SVM Basic + DIF 0.878** 0.875** 0.881**
Basic + DIF + DDI 0.889* 0.885* 0.891*
Basic 0.920 0.843 0.855

MLP Basic + DIF 0.940** 0.875** 0.884**
Basic + DIF + DDI 0.951** 0.888* 0.897
Basic 0.909 0.835 0.848

DeepFM Basic + DIF 0.935** 0.877** 0.885**
Basic + DIF + DDI 0.947* 0.881 0.893*
Basic 0.902 0.816 0.820

LSTM Basic + DIF 0.913* 0.834* 0.846*
Basic + DIF + DDI 0.953** 0.874** 0.877**
Basic 0.913 0.835 0.845

RF Basic + DIF 0.933** 0.863** 0.867*
Basic + DIF + DDI 0.955* 0.886* 0.892*
Basic 0.969 0.919 0.925

GBDT Basic + DIF 0.976* 0.932* 0.934*
Basic + DIF + DDI 0.980* 0.940** 0.945*

from the time-dependent model D-Cox-Time, thus better describe
the sequential changes.

Among all the models, GBDT performs the best. Even with the
Basic features, GBDT performs better than all feature categories in
other models. This may because ensemble methods are effective in
our churn prediction task. Meanwhile, it can be found that deep
models are not so powerful for the problem since we perform on a
small dataset with about 4000 users.

Moreover, it is observed that although more information is used
for training in the sequential model LSTM, it still performs worse
than ensemble models. On the one hand, the reason might be that
behavior sequence contains much noise, and users may have differ-
ent patterns for churn, which is hard to be learned by a single RNN.
On the other hand, it demonstrates that the features we extracted
for non-sequential models are effective.

6.2 Further Analysis on Churn Prediction
As the influence of difficulty on churn is dynamic (See Table 4)
and user lifetime is an essential metric in application, we further
explore how difficulty helps churn prediction in different phases.

Following the analysis in Section 5.2, the 30-day observation
window is divided into three phases, churning before 10 days, in
10 days to 20 days, and after 20 days. At each phase, churn user
is defined the same as Section 3.5, and all other users who have
not churned yet are labeled as retain users. We conduct churn
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Figure 5: Churn prediction results (in terms of AUC) on
three phases of users with GBDT model.

prediction experiments under the three new settings with the best-
performance model, GBDT, and the model is optimized with AUC.

The churn prediction performances for different phases are
shown in Figure 5. At any phase, adding difficulty-related features
promotes performance. With all features, the GBDT gains AUC
greater than 0.99 on all three datasets. Basic features perform well
enough (AUC=0.985) when users churn before 10 days, but the per-
formance declines in longer period. In 10-20 days, adding Difficulty
features improves the AUC significantly. After 20 days, Difficulty
features contribute less, but adding DDI features further improve
the performance significantly.

Therefore, Difficulty and DDI help predict users’ churn at any
stage, and they are especially beneficial in longer periods.

6.3 Online Churn Intervention Results
In online experiment, the Difficulty Flow is fit with the first 30
levels for each user, and users with less than 30 levels are filtered.
D-Cox-Time is trained with online data of 20,000 users before A/B
test. In 10-day A/B test experiments, we collect 14,615 users in the
experimental group and 14,687 users in the control group.

We consider four metrics commonly used in industry scenarios:

• Next-day churn percentage: Average percentage of users
logging in at day T but without interactions at day T+1
(T=1,2,...,9). Lower next-day churn percentage indicates bet-
ter retention of users in short period.

• Week-churn percentage: Percentage of users who had inter-
actions between day1 and day7, but have no interactions in
the following day8 to day10. Lower week-churn percentage
indicates better retention in long period.

• Total playtime per user: Average of total playtime for each
user in ten days. Longer time indicates more engagement.

• Average session length: Average amount of interactions in the
sessions. Longer session length denotes more engagement.

The A/B test results are shown in Table 6. The average next-day
churn percentage decreases 10.9%, and the longer week-churn per-
centage decreases nearly 20%, indicating the intervention system
does optimize retention of users in the game. Moreover, the engage-
ment for users has significant improvement. On average, compared
with control group, users in experimental group spend 10% more
time on game, and have more interactions in each session.

Therefore, the difficulty intervention system for online appli-
cation can improve user retention and engagement significantly,
which further verify our Difficulty-Aware Framework is efficient.



Table 6: The online A/B test experiment results. To protect
commercial privacy of the game company, we only present
the relative gain between experimental group and control
group. ↓ (↑) indicates lower (higher) means better perfor-
mance. Independent t-test is conducted on the results, where
** denotes the statistical significance for 𝑝 < 0.01.

Metric Experimental Group
vs. Control Group

Next-day churn percentage ↓ -10.9%**
Week-churn percentage ↓ -19.7%**
Total playtime per user ↑ +11.0%**
Average session length ↑ +4.6%**

7 CONCLUSIONS AND FUTUREWORK
In this work, we propose a Difficulty-Aware Framework for churn
prediction and intervention, which provide an in-depth understand-
ing of difficulty in online game scenarios. Based on user behavior
history, we model the Personalized Perceived Difficulty (PPD) by
difficulty flow, and its Dynamic Difficulty Influence (DDI) on churn
is with a time-dependent survival analysis model D-Cox-Time. The
analysis verifies that users follow a proportional relation between
subjective effort and the objective game challenges, and too hard
or too easy games will both lead to higher churn risk. Due to the
flexibility of our framework, it can be applied to different games
easily. In a specialization on a real-world online game, significant
improvements are achieved with the extracted difficulty-related
features. Difficulty-aware features enhanced models outperform
the originals significantly in churn prediction. Besides, online A/B
test shows the effectiveness of introducing difficulty features in
churn intervention.

In the future, we plan to further investigate more complex distri-
butions of Personalized Perceived Difficulty to understand the pro-
cess of difficulty perception. Besides, the current DAF takes a two-
steps strategy, i.e. difficulty learning and prediction/intervention.
We will continue to investigate whether it is possible to conduct an
end-to-end framework. Moreover, the difficulty modeling frame-
work can be applied to other scenarios such as online education.
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REPRODUCIBILITY
To facilitate reproducibility of the results in this paper, we are shar-
ing the data used at , and the codes at https://github.com/THUIR/
DAF-for-churn. The open data contains raw user interactions and

payment logs after removing the sensitive information about user
privacy. The codes includes pre-processing of data, five-fold split
results , modeling of difficulty, and churn prediction experiments.
Hyper-parameters for all methods in churn prediction are included
in the README.md for the codes.

https://github.com/THUIR/DAF-for-churn
https://github.com/THUIR/DAF-for-churn
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