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ABSTRACT
Ranking ensemble is a critical component in real recommender

systems. When a user visits a platform, the system will prepare

several item lists, each of which is generally from a single behavior

objective recommendation model. As multiple behavior intents, e.g.,

both clicking and buying some specific item category, are commonly

concurrent in a user visit, it is necessary to integrate multiple single-

objective ranking lists into one. However, previous work on rank

aggregation mainly focused on fusing homogeneous item lists with

the same objective while ignoring ensemble of heterogeneous lists

ranked with different objectives with various user intents.

In this paper, we treat a user’s possible behaviors and the po-

tential interacting item categories as the user’s intent. And we aim

to study how to fuse candidate item lists generated from different

objectives aware of user intents. To address such a task, we propose

an Intent-aware ranking Ensemble Learning (IntEL) model to fuse

multiple single-objective item lists with various user intents, in

which item-level personalized weights are learned. Furthermore,

we theoretically prove the effectiveness of IntEL with point-wise,

pair-wise, and list-wise loss functions via error-ambiguity decom-

position. Experiments on two large-scale real-world datasets also

show significant improvements of IntEL on multiple behavior ob-

jectives simultaneously compared to previous ranking ensemble

models.
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1 INTRODUCTION
Users typically have various intents when using recommender sys-

tems. For instance, when shopping online, users may intend to buy

snacks or browse clothes. Generally, we call the users’ behaviors

the behavior intents and their interacted item categories the item

category intents. Multiple behavior intents may be concurrent in

a visit, and users need distinct items with different item category

intents. Therefore, user intents are essential to recommender sys-

tems for recommendation list generation. In this paper, we follow

the definition of user intents by Chen et al. [10] as a combination

of user behavior and item category, such as booking an item with a

hotel category or clicking an item in a phone category.

From the systems’ viewpoint, since users usually have diverse

intents, multiple item lists will be generated when a user visits the

platform. These lists generally come from recommendation models

optimized with different behavior objectives, such as clicking, con-

suming, or browsing duration. Existing research has made promis-

ing achievements with a single objective, such as predicting Click

Through Rate (CTR) [4, 20, 48] and Conversion Rate (CVR) [14, 32].
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Figure 1: An example of fusing two single-objective item
lists into a final list aware of multiple concurrent user in-
tents.

However, as multiple intents of a user may appear in a visit, it is cru-

cial to aggregate multiple heterogeneous single-objective ranking

lists aware of the user’s current intents.

An example of the intent-aware ranking ensemble on an online

shopping platform is shown in Figure 1. A user needs to buy a

phone charger, and she also wants to browse new products about

phones and headsets. The system has two single-objective ranking

lists ready when she visits the platform. These lists are produced by

two recommendation models optimized with users’ consumption

and clicking histories, respectively. To satisfy the user’s diverse

intents at once, an intent-aware ranking ensemble model is adopted

to aggregate two ranking lists for a final display, where items are re-

ordered according to both basic ranking lists and the user’s intents.

Thus, charger1, charger2, phone1, and headset1 are placed at the

front of the final list, satisfying users’ preference better than both

single-objective ranking lists. Therefore, intent-aware ranking en-

semble is important for promoting recommendation performance.

However, there have been few attempts to combine heteroge-

neous single-objective ranking lists (Hereinafter referred to as ba-

sic lists) considering user intents. In industry, a common strategy

is simply summing basic lists with pre-defined list-level weights,

which ignores users’ personalized preference. While in academia,

existing studies are not adequate to handle ranking ensemble for

personalized recommendation. Widely-explored unsupervised rank

aggregation methods [3, 21, 23] are mostly studied in information

retrieval tasks rather than recommendation scenario. Recently, su-

pervised methods [1, 2, 30] have been proposed to combine different

item lists in recommendation. Nevertheless, these studies focused

on combining homogeneous item lists optimized for the same be-

havior, not the heterogeneous rank lists for different objectives.

Users’ intents are also overlooked in the ranking ensemble stage.

To aggregate basic lists aware of user intents, we aim to learn

different weights for different basic lists and item categories to

sum basic lists’ scores. However, it is challenging since numerous

weights should be assigned for all items in all basic lists, which

may be hard to learn. Therefore, we first prove its effectiveness

theoretically. Unlike previous studies, we aim to assign ensemble

weights at item level rather than list level. We prove the effective-

ness of this form of ranking ensemble and verify that the loss of the

ensemble list can be smaller than the loss of any basic models with

point-wise, pair-wise, and list-wise loss functions. An ambiguity

term is derived from the proof and used for optimization loss.

With theoretical guarantees, another challenge in practice is to

infer users’ intents and integrate the intents into ranking ensemble

of heterogeneous basic lists. To address this challenge, we propose

an Intent-aware ranking Ensemble Learning (IntEL) method for

personalized ensemble of multiple single-objective ranking lists

adaptively. A sequential model is adopted to predict users’ intents.

And a ranking ensemble module is designed to integrate basic list

scores, item categories, and user intents. Thus, the learnable ranking

ensemble model can adaptively adjust the integration of multiple

heterogeneous lists with user intents.

We conducted experiments on a public-available online shopping

recommendation dataset and a local life service dataset. Ourmethod,

IntEL, is compared with various ensemble learning baselines and

shows significant improvements. The main contributions of this

work are as follows:

• To our knowledge, it is the first work that aims to general-

ize ranking ensemble learning with item-level weights on

multiple heterogeneous item lists. We theoretically prove

the effectiveness of ranking ensemble in this new setting.

• A novel intent-aware ranking ensemble learning model, In-

tEL, is proposed to fuse multiple single-objective recommen-

dation lists aware of user intents adaptively. In the model,

ambiguity loss, ranking loss, and intent loss have been pro-

posed and integrated.

• Experiments on two large-scale real-world recommendation

datasets indicate IntEL is significantly superior to previous

ranking ensemble models on multiple objectives.

2 RELATEDWORK
2.1 Ranking Ensemble
Ranking ensemble, i.e., fusing multiple ranking lists for a consensus

list, has been long discussed in IR scenario [17, 19] and proved to

be NP-hard even with small collections of basic lists [16].

In general, rank aggregation includes unsupervised and super-

vised methods. Unsupervised methods only rely on the rankings.

For instance, Borda Count [5] computed the sum of all ranks.

MRA [18] adopted the median of rankings. Comparisons among

basic ranks were also used, such as pair-wise similarity in Out-

rank [19]and distance from null ranks in RRA [21]. Recently, re-

searchers have paid attention to supervised rank aggregation meth-

ods. For example, the Evolutionary Rank Aggregation (ERA) [30]

was optimized with genetic programming. Differential Evolution

algorithm [1, 2] and reinforcement learning [47] were also adopted

for rank aggregation optimization. However, these rank aggrega-

tion methods only utilized the rank or scores of items in basic lists

without considering item contents and users in recommendation.

Another view on the fusion problem comes from ensemble learn-

ing. It is a traditional topic in machine learning [35], which has been

successfully applied to various tasks [29, 39, 42]. A basic theory in

ensemble learning is error-ambiguity (EA) decomposition analy-

sis [22], which proves better performance can be achieved with ag-

gregated results with good and diverse basic models. It was proved

in classification and regression with diverse loss functions [6, 45].

Liu et al. [24] generalized EA decomposition to model-level weights
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in ranking ensemble with list-wise loss, where different items in a

list shared the same weights.

The differences between the previous studies and our method are

mainly twofold: First, rather than calculate a general weight for each

basic model, we extend to assign item-level weights considering

item category and user behavior intents. We theoretically prove

the effectiveness of this extension. Second, we aim to combine

heterogeneous lists generated for different behavior objectives and

simultaneously improve performance on multiple objectives.

2.2 Multi-Intent Recommendation
Since we aggregate ranking lists aware of users’ multiple intents,

we briefly introduce recent methods on multi-intents and multi-

interests in recommender systems. Existing studies focused on

capturing dynamic intents in the sequential recommendation [10,

25, 26, 40, 43]. For instance, AIR [10] predicted intents and their

migration in users’ historical interactions. Wang et al. [40] modeled

users’ dynamic implicit intention at the item level to capture item

relationships. MIND [34] and ComiRec [9] adopted dynamic routing

from historical interactions to capture users’ multi-intents and

diversity. TimiRec [41] distilled target user interest from predicted

distribution on multi-interest of the users. With the development

of contrastive learning, implicit intent representations were also

applied as constraints on contrastive loss [11, 15].

Previous studies usually mixed “intent” and “interest” and paid

attention to intent on item contents in single-behavior scenarios.

However, we follow [10] to consider both behavior intents and item

category intents. Moreover, instead of learning user preference for

each intent, we utilize intents as guidance for fusing user preference

with different behavior objectives.

2.3 Multi-Objective Recommendation
Another brunch of related but different work is the multi-objective

recommendation. It mainly contains two groups of studies. One

group provides multiple recommendation lists for different objec-

tiveswith shared information among objectives, such asMMOE [28]

and PLE [38], where different lists are evaluated on corresponding

objectives separately. The other group tried to promote the model

performance on a target behavior objective with the help of other

objectives, such as MB-STR [46] predicting users’ click preferences.

However, instead of generating multiple lists or specifying a target

behavior, we fuse a uniform list on which multiple objectives are

evaluated simultaneously.

Some studies that tried to jointly optimize ranking accuracy and

other goals are also called multi-objective recommendation, such

as fairness [44], diversity [8], etc. They sought to promote other

metrics while maintaining utility on some behavior. But we aim

to concurrently promote performance on multiple objectives by

aggregating various recommendation lists.

3 PRELIMINARIES
3.1 Ranking Ensemble Learning Definition
Let F = {𝑓 1, 𝑓 2, ..., 𝑓 𝐾 } be 𝐾 basic models that are trained for 𝐾

different objectives (such as click, buy, and favorite, etc.), I(𝑢, 𝑐) =
{𝑖1, 𝑖2, ..., 𝑖𝑁 } be the union set of 𝐾 recommended basic item lists

for user 𝑢 in session environment context 𝑐 (e.g., time and location),

Table 1: Notations. 𝑢 and 𝑐 denote user and context, respec-
tively.
Notation Description
F = {𝑓 1, ..., 𝑓 𝐾 } Set of 𝐾 basic models.

I(𝑢, 𝑐) The union set of items generated with F.
𝑆𝑘𝑛 (𝑢, 𝑐) Predicted score from basic model 𝑘 on item 𝑛.

𝑧𝑘𝑚𝑛 (𝑢, 𝑐) The difference between scores 𝑆𝑘𝑛 (𝑢, 𝑐) − 𝑆𝑘𝑚 (𝑢, 𝑐)
𝑤𝑘𝑛 (𝑢, 𝑐) Ensemble weight of item 𝑛 in basic model 𝑘 .

𝑆𝑒𝑛𝑠𝑛 (𝑢, 𝑐) The final ensemble score of item 𝑛.

𝜋𝑛 (𝑢, 𝑐) Ground truth ranking of item 𝑛.

𝜋𝑢,𝑐 List of ground truth, 𝜋𝑢,𝑐 = {𝜋1 (𝑢, 𝑐), ..., 𝜋𝑛 (𝑢, 𝑐) }.
𝐼𝑛𝑡 Distribution of user intent.

𝑙𝑚, 𝑙𝑏 , 𝑙𝑝−𝑙 Point-wise, pair-wise and list-wise loss function.

A The ambiguity term in ensemble learning loss.

and 𝑆𝑘𝑛 (𝑢, 𝑐) = 𝑓 𝑘 (𝑖𝑛, 𝑢, 𝑐) be the predicted score given by basic

model 𝑘 on item 𝑛. The goal of ranking ensemble learning is to

learn a weighted ensemble score 𝑆𝑒𝑛𝑠𝑛 (𝑢, 𝑐) for each item 𝑖𝑛 in I,

𝑆𝑒𝑛𝑠𝑛 (𝑢, 𝑐) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑛 (𝑢, 𝑐) · 𝑆𝑘𝑛 (𝑢, 𝑐) (1)

Where𝑤𝑘𝑛 (𝑢, 𝑐) ∈ R denotes the weight of the 𝑘-th basic model

for item 𝑖𝑛 . The weights are learnable with the help of side in-

formation, e.g., user intents and item categories. The items in I
are sorted according to 𝑆𝑒𝑛𝑠𝑛 , and are compared with a ground

truth order of ranking 𝜋𝑢,𝑐 = {𝜋1, 𝜋2, ..., 𝜋𝑁 }, which is sorted to

users’ interactions with a pre-defined priority of user feedback,

e.g., Buy>Click>Examine. The priority can be defined by busi-

ness realities and will not influence the model learning strategy.

The definition of ranking ensemble learning is similar to previous

work [1, 24, 31], except that we conduct ensemble on heterogeneous

basic models with different objectives, which makes the problem

more difficult. The main notations are shown in Table 1.

3.2 User Intent Definition
When aggregating basic models optimized with different objectives,

users’ intent about behaviors and item categories are both essen-

tial. Therefore, we define a user’s intent in a visit as a probability

distribution of item categories and behaviors,

𝐼𝑛𝑡 ∼ 𝑃𝑖𝑛𝑡 (𝐼 , 𝐵),
∑︁
𝐼×𝐵

𝑃𝑖𝑛𝑡 (𝐼 , 𝐵) = 1 (2)

Where 𝐼 and 𝐵 indicate the item category intents and behavior

intents, respectively. The types of categories and behaviors vary

with recommendation scenarios. For instance, in online shopping,

𝐼 can be product class, and 𝐵 may include clicking and buying.

In music recommender systems, 𝐼 may be music genre, while 𝐵

can contain listening and purchasing albums. In experiments, user

intents 𝐼𝑛𝑡 are predicted from users’ historical interactions and

environment context.

3.3 Ranking Losses
Three representative losses are generally leveraged in the recom-

mendation scenario, namely point-wise, pair-wise, and list-wise loss.

We will theoretically and empirically illustrate the effectiveness of

ranking ensemble with three losses in the following sections.

For a given user 𝑢 under session context 𝑐 with multi-level

ground truth ranking 𝜋𝑢,𝑐 = {𝜋1, 𝜋2, ...𝜋𝑁 } on an item set I =
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{𝑖1, 𝑖2, ..., 𝑖𝑁 }, the loss of score list S(𝑢, 𝑐) = {𝑆1, 𝑆2, ..., 𝑆𝑁 } is de-
fined as (𝑢 and 𝑐 are omitted):

• Point-wise Loss As 𝜋 is a multi-level feedback based on a

group of user feedback, the Mean Squared Error (MSE) loss

is utilized as a representative point-wise loss,

𝑙𝑚 (𝜋, S) = 1

𝑁

𝑁∑︁
𝑛=1

𝑙𝑚 (𝜋𝑛, 𝑆𝑛) :=
1

𝑁

𝑁∑︁
𝑛=1

(𝑆𝑛 − 𝜋𝑛)2 (3)

• Pair-wise LossWe leverage the Bayesian Personalized Rank-

ing (BPR) loss [33]. Following the negative sampling strategy

for multi-level recommendation [27], a random item from

one level lower is paired with a positive item at each level,

𝑙𝑏 (𝜋, S) : =
1

𝑁 +

𝐿∑︁
𝑙=1

∑︁
𝑛,𝑚∈𝐼+

𝑙
,𝐼−
𝑙

𝑙𝑏 (𝑆𝑛, 𝑆𝑚)

𝑙𝑏 (𝑆𝑛, 𝑆𝑚) = −𝑙𝑜𝑔𝜎 (𝑆𝑛 − 𝑆𝑚)

(4)

Where 𝐿 is the number of interaction levels (e.g., buy, click,

and exposure), 𝑁 +
is the number of positive items of all

levels, 𝐼+
𝑙
and 𝐼−

𝑙
are positive and one-level-lower negative

item set for level 𝑙 , and 𝜎 is the sigmoid function.

• List-wise Loss Following [24], we adopt the Plackett-Luce
(P-L) model as the likelihood function of ranking predictions,

𝑃𝑝−𝑙 (𝜋 |S) =
1

𝑁

𝑁∏
𝑛=1

exp(𝑆𝜋𝑛 )∑𝑁
𝑚=𝑛 exp(𝑆𝜋𝑚 )

(5)

Where 𝜋𝑛 indicates the 𝑛-th item sorted by ground truth 𝜋 .

The corresponding list-wise loss function is

𝑙𝑝−𝑙 (𝜋, S) := − log[𝑃𝑝−𝑙 (𝜋 |S)] (6)

4 THEORETICAL EFFECTIVENESS OF
RANKING ENSEMBLE LEARNING

To prove the effectiveness of our proposed item-level ranking en-

semble learning in Eq.1, we aim to prove that the loss of ensemble

learning scores S𝑒𝑛𝑠 = {𝑆𝑒𝑛𝑠𝑛 } can be smaller than any of the loss

of basic-model scores S𝑘 = {𝑆𝑘𝑛 } for point-wise, pair-wise, and list-

wise loss, i.e. 𝑙 (𝜋, S𝑒𝑛𝑠 ) ≤ ∑𝐾
𝑘=1

w𝑘 𝑙 (𝜋, S𝑘 ),∀w𝑘 , 𝑙 ∈ {𝑙𝑚, 𝑙𝑏 , 𝑙𝑝−𝑙 }.
In this way, we can claim that there exist some combinations of

weights w𝑘 to achieve results better than all basic models.

Inspired by previous studies in ensemble learning, error ambigu-

ity (EA) decomposition [22] provides an upper bound for ensemble

loss 𝑙 (𝜋, S𝑒𝑛𝑠 ), which helps conduct the above proof. For basic lists

with loss {𝑙 (𝜋, S𝑘 )}, EA decomposition tries to split ensemble loss

𝑙 (𝜋, S𝑒𝑛𝑠 ) into aweighted sumof basic-model loss (

∑
𝑘 𝑤𝑘𝑙 (𝜋, S𝑘 ),∀𝑤𝑘 )

minus a positive ambiguity term 𝐴1
of basic models, so that the

upper bound of 𝑙 (𝜋, S𝑒𝑛𝑠 ) is controlled by both basic-model losses

and ambiguity. It was recently proved in ranking tasks with the

same weights for a basic list (i.e.,𝑤𝑘𝑛 = 𝑤𝑘𝑚,∀𝑛 =𝑚) [24]. However,

different weights should be assigned for different items in our set-

ting. Therefore, we need to verify whether EA decomposition is

still available. To summarize, we try to prove that loss functions

can be rewritten as 𝑙 (𝜋, S𝑒𝑛𝑠 ) ≤ ∑
𝑘

∑
𝑛𝑤

𝑘
𝑛𝑙
𝑘
𝑛 (𝜋, S𝑘𝑛) − 𝐴,∀𝑤𝑘𝑛 for

point-wise, pair-wise, list-wise loss in the following.

1
The ambiguity𝐴 is sometimes called the diversity in EA decomposition. We use ambi-
guity to denote it to avoid confusion with the term item diversity in recommendation.

4.1 Point-wise Loss
Theorem 1 (Generalized EA Decomposition Theory for

Point-wise Loss). Given a set of score lists {𝑆𝑘𝑛 |𝑘 ∈ {1, 2, ..., 𝐾}, 𝑛 ∈
{1, ..., 𝑁 }} from 𝐾 basic models on 𝑁 items, and a weighted ensemble
model 𝑆𝑒𝑛𝑠𝑛 =

∑𝑁
𝑛=1𝑤

𝑘
𝑛𝑆
𝑘
𝑛 with 𝑤𝑘𝑛 ≥ 0and

∑𝐾
𝑘=1

𝑤𝑘𝑛 = 1, the MSE
loss of the 𝑛-th ensemble score 𝑆𝑒𝑛𝑠𝑛 can be decomposed into two parts,

𝑙𝑚 (𝜋𝑛, 𝑆𝑒𝑛𝑠𝑛 ) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝑙𝑚 (𝜋𝑛, 𝑆𝑘𝑛 ) −
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐴
𝑘
𝑛 (7)

where 𝐴𝑘𝑛 indicates the ambiguity term,

𝐴𝑘𝑛 = (𝑆𝑘𝑛 − 𝑆𝑒𝑛𝑠𝑛 )2 (8)

Proof. For each basic-model score 𝑆𝑘𝑛 , we expand the MSE loss

𝑙𝑚 (𝜋𝑛, 𝑆𝑘𝑛 ) in Eq. 3 around point 𝑆𝑒𝑛𝑠𝑛 by Taylor expansion with

Lagrange type reminder (𝜋𝑛 is removed when the meaning is clear),

𝑙𝑚 (𝑆𝑘𝑛 ) = 𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 )+ 𝜕𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 )
𝜕𝑆𝑒𝑛𝑠𝑛

(𝑆𝑘𝑛−𝑆𝑒𝑛𝑠𝑛 )+ 1

2!

𝜕2𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 )
(𝜕𝑆𝑒𝑛𝑠𝑛 )2

(𝑆𝑘𝑛−𝑆𝑒𝑛𝑠𝑛 )2

(9)

Where 𝑆𝑒𝑛𝑠𝑛 is an interpolation point between 𝑆𝑒𝑛𝑠𝑛 and 𝑆𝑘𝑛 . Define

𝐴𝑘𝑛 as Eq.8, we weighted sum losses of all basic models as follows,

𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝑙𝑚 (𝑆𝑘𝑛 ) =
𝐾∑︁
𝑘=1

[𝑤𝑘𝑛𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 ) + 𝜕𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 )
𝜕𝑆𝑒𝑛𝑠𝑛

𝑤𝑘𝑛 (𝑆𝑘𝑛 − 𝑆𝑒𝑛𝑠𝑛 ) +𝑤𝑘𝑛𝐴𝑘𝑛]

=𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 ) + 𝜕𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 )
𝜕𝑆𝑒𝑛𝑠𝑛

(
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝑆
𝑘
𝑛 − 𝑆𝑒𝑛𝑠𝑛

)
+

𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐴
𝑘
𝑛

=𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 ) +
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐴
𝑘
𝑛

(10)

The first equation is due to

∑𝐾
𝑘=1

𝑤𝑘𝑛 = 1 and 𝜕2𝑙𝑚/(𝜕𝑆)2 = 2, and

the second equation is due to Eq. 1. Therefore,

𝑙𝑚 (𝑆𝑒𝑛𝑠𝑛 ) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝑙𝑚 (𝑆𝑘𝑛 ) −
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐴
𝑘
𝑛 (11)

Proof done. □

Since the ambiguity 𝐴𝑘𝑛 in Eq. 8 is positive and 𝑤𝑘𝑛 ≥ 0, Eq. 7

follows the form of EA decomposition. Ranking ensemble with item-

level weights for point-wise loss is effective theoretically, since the

ensemble loss is smaller than weighted sum of basic model losses

with any𝑤𝑘𝑛 as long as𝑤𝑘𝑛 ≥ 0 and

∑𝐾
𝑘=1

𝑤𝑘𝑛 = 1.

For brevity, we will omit statements of score lists and ensemble

formulas in the following theorems.

4.2 Pair-wise Loss
Theorem 2 (Generalized EA Decomposition Theory for

Pair-wise Loss). When 𝑤𝑘𝑛 ≥ 0,
∑𝐾
𝑘=1

𝑤𝑘𝑛 = 1, and |𝑤𝑘𝑚 −𝑤𝑘𝑛 | ≤
𝛿,∀𝑚,𝑛, the BPR loss of a pair of ensemble scores 𝑆𝑒𝑛𝑠𝑛 and 𝑆𝑒𝑛𝑠𝑚 can
be decomposed into

𝑙𝑏 (𝑆𝑒𝑛𝑠𝑛 , 𝑆𝑒𝑛𝑠𝑚 ) <
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝑙𝑏 (𝑆𝑘𝑛 , 𝑆𝑘𝑚) + 𝛿
𝐾∑︁
𝑘=1

𝑆𝑘𝑚 −
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐴
𝑘
𝑛𝑚 (12)
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Where 𝐴𝑘𝑛𝑚 is the ambiguity of scores generated from basic models,

𝐴𝑘𝑛𝑚 = 𝜎 (𝑧𝑒𝑛𝑠 ) (1 − 𝜎 (𝑧𝑒𝑛𝑠 ))
𝐾∑︁
𝑘=1

𝑤𝑘𝑛 (𝑧𝑘𝑛𝑚 − 𝑧𝑒𝑛𝑠𝑛𝑚 )2 (13)

𝑧∗𝑛𝑚 = 𝑆∗𝑛 − 𝑆∗𝑚 denotes the differences between scores.

Due to space limitation, we only show key steps in the proof:

Proof. Let 𝑧𝑘𝑛𝑚 = 𝑆𝑘𝑛 −𝑆𝑘𝑚 and 𝑙𝑏 (𝑧∗𝑛𝑚) = 𝑙𝑏 (𝑆∗𝑛, 𝑆∗𝑚) in Eq.4, we

expand 𝑙𝑏 (𝑧𝑘𝑛𝑚) around 𝑧𝑒𝑛𝑠𝑛𝑚 by Taylor expansion,

𝑙𝑏 (𝑧𝑘𝑛𝑚) = 𝑙𝑏 (𝑧𝑒𝑛𝑠𝑛𝑚 ) + 𝜕𝑙𝑏 (𝑧𝑒𝑛𝑠𝑛𝑚 )
𝜕𝑧𝑒𝑛𝑠𝑛𝑚

(𝑧𝑘𝑛𝑚 − 𝑧𝑒𝑛𝑠𝑛𝑚 ) + 1

2!

𝜕2𝑙𝑏 (𝑧𝑒𝑛𝑠𝑛𝑚 )
(𝜕𝑧𝑒𝑛𝑠𝑛𝑚 )2

:= 𝑙𝑏 (𝑧𝑒𝑛𝑠𝑛𝑚 ) − 𝐵𝑘𝑛𝑚 +𝐴𝑘𝑛𝑚
(14)

Where 𝑧𝑒𝑛𝑠𝑛𝑚 is an interpolation point between 𝑧𝑒𝑛𝑠𝑛𝑚 and 𝑧𝑘𝑛𝑚 . With

the limitation that

∑𝐾
𝑘=1

𝑤𝑘𝑛 = 1 and |𝑤𝑘𝑛 −𝑤𝑘𝑚 | ≤ 𝛿 , the weighted
sum of 𝐵𝑘𝑛𝑚 is limited by

𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐵
𝑘
𝑛𝑚 = [1 − 𝜎 (𝑧𝑒𝑛𝑠𝑛𝑚 )]

𝐾∑︁
𝑘=1

𝑤𝑘𝑛 (𝑧𝑘𝑛𝑚 − 𝑧𝑒𝑛𝑠𝑛𝑚 )

≤
𝐾∑︁
𝑘=1

|𝑤𝑘𝑛 −𝑤𝑘𝑚 | |𝑆𝑘𝑚 | ≤ 𝜎
𝐾∑︁
𝑘=1

𝑆𝑘𝑚

(15)

Sum both sides of Eq.14 with weights, we get

𝑙𝑏 (𝑧𝑒𝑛𝑠𝑛𝑚 ) <
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝑙𝑏 (𝑧𝑘𝑛𝑚) + 𝜎
𝐾∑︁
𝑘=1

𝑆𝑘𝑚 −
𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐴
𝑘
𝑛𝑚 (16)

Proof done. □

The range limitation of𝑤𝑘𝑛 leads to 𝛿 ≤ 1. And in pair-wise loss,

the order rather than the values of scores matters. So the second

term in Eq. 12 (𝛿
∑𝐾
𝑘=1

𝑆𝑘𝑚 <
∑𝐾
𝑘=1

𝑆𝑘𝑚) can be arbitrarily small.

Meanwhile, the ambiguity 𝐴𝑘𝑛𝑚 is semi-positive. Therefore, Eq.12

follows the form of EA decomposition, and our ranking ensemble

method with pair-wise loss is effective theoretically.

4.3 List-wise Loss
Theorem 3 (Generalized EA Decomposition Theory for

List-wise Loss). When 𝑤𝑘𝑛 ≥ 0,
∑𝐾
𝑘=1

𝑤𝑘𝑛 = 1, and |𝑤𝑘𝑛 −𝑤𝑘𝑚 | ≤
𝛿 for any 𝑚 and 𝑛, the list-wise loss of ensemble scores S𝑒𝑛𝑠 =

{𝑆𝑒𝑛𝑠
1
, 𝑆𝑒𝑛𝑠

2
, ..., 𝑆𝑒𝑛𝑠𝑛 } (sorted with 𝜋 ) can be decomposed as

𝑙𝑝−𝑙 (𝜋, S𝑒𝑛𝑠 ) <
𝐾∑︁
𝑘=1

𝑤𝑘
max

𝑙𝑝−𝑙 (𝜋, S𝑘 )+𝛿𝑁𝑆max

sum−
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

𝑤𝑘𝑛𝐴
𝑘
𝑛 (17)

Where𝑤𝑘
max

denotes the maximum of all weights in list 𝑘 , 𝐴𝑘𝑛 is the
ambiguity at position 𝑛,

𝐴𝑘𝑛 =

[∑𝑁
𝑚=𝑛+1 exp(−𝑧𝑒𝑛𝑠𝑛𝑚 ) (𝑧𝑘𝑛𝑚 − 𝑧𝑒𝑛𝑠𝑛𝑚 )

]
2(

1 + ∑𝑁
𝑚=𝑛+1 exp(𝑧𝑒𝑛𝑠𝑛𝑚 )

)
2

(18)

𝑆max

sum is defined as

𝑆max

sum =
𝑁

max

𝑚=1

𝐾∑︁
𝑘=1

𝑆𝑘𝑚 (19)

𝑧∗𝑛𝑚 = 𝑆∗𝑛 − 𝑆∗𝑚 denotes the differences between scores.

Due to space limitation, we only show key steps in the proof:

Proof. We define the score difference 𝑧𝑛:𝑁 = [𝑧𝑛+1, ..., 𝑧𝑁 ] =

[𝑆𝑛 −𝑆𝑛+1, ..., 𝑆𝑛 −𝑆𝑁 ] and the logarithm pseudo-sigmoid function,

𝑔𝑛 (𝑧𝑛:𝑁 ) = log

(
1 +

𝑁∑︁
𝑚=𝑛+1

exp(−𝑧𝑛𝑚)
)

(20)

For each basic model of a list of items S𝑘 = {𝑆𝑘𝑛 |𝑛 ∈ {1, 2, ..., 𝑁 }}, the
PL loss is 𝑙𝑝−𝑙 (S𝑘 ) =

∑𝑁
𝑛=1 𝑔𝑛 (𝑧𝑘𝑛:𝑁 ). We expand 𝑔𝑛 (𝑧𝑘𝑛:𝑁 ) around

point 𝑧𝑒𝑛𝑠
𝑛:𝑁

by Taylor expansion with Lagrange type reminder,

𝑔𝑛 (𝑧𝑘𝑛:𝑁 ) =𝑔𝑛 (𝑧
𝑒𝑛𝑠
𝑛:𝑁 ) + [∇𝑔𝑛 (𝑧𝑒𝑛𝑠𝑛:𝑁 )]

𝑇 [𝑧𝑘𝑛:𝑁 − 𝑧𝑒𝑛𝑠𝑛:𝑁 ]

+ 1

2!

[𝑧𝑘𝑛:𝑁 − 𝑧𝑒𝑛𝑠𝑛:𝑁 ]
𝑇𝐻𝑛 (𝑧𝑒𝑛𝑠𝑛:𝑁 ) [𝑧

𝑘
𝑛:𝑁 − 𝑧𝑒𝑛𝑠𝑛:𝑁 ]

:=𝑔𝑛 (𝑧𝑒𝑛𝑠𝑛:𝑁 ) − 𝐵
𝑘
𝑛 +𝐴𝑘𝑛

(21)

With the limitation that

∑𝐾
𝑘=1

𝑤𝑘𝑛 = 1, 𝑤𝑘𝑛 ≥ 0, and |𝑤𝑘𝑛 −𝑤𝑘𝑚 | <
𝛿,∀𝑛,𝑚, the weighted sum of 𝐵𝑘𝑛 on 𝐾 basic models will be

𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐵
𝑘
𝑛 =

∑𝑁
𝑚=𝑛+1 exp(−𝑧𝑒𝑛𝑠𝑛𝑚 )∑𝐾

𝑘=1
𝑤𝑘𝑛 [𝑧𝑘𝑛𝑚 − 𝑧𝑒𝑛𝑠𝑛𝑚 ]

1 + ∑𝑁
𝑚=𝑛+1 exp(−𝑧𝑒𝑛𝑠𝑛𝑚 )

< 𝛿 · 𝑆max

sum

(22)

Therefore, sum from 𝑛 = 1 to 𝑛 = 𝑁 , we get

𝑙𝑝−𝑙 (S𝑒𝑛𝑠 ) <
𝐾∑︁
𝑘=1

𝑤𝑘𝑚𝑎𝑥 𝑙𝑝−𝑙 (S𝑘 ) + 𝛿𝑁𝑆max

sum
−

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝑤𝑘𝑛𝐴
𝑘
𝑛 (23)

Proof done. □

Because in the list-wise optimization, the order rather than the

values of scores matters, 𝑆𝑒𝑛𝑠𝑛 can be arbitrarily small. Meanwhile,

the ambiguity term 𝐴𝑘𝑛 is semi-positive. Therefore, Eq.17 conforms

to the EA decomposition theory, and our ranking ensemble method

with list-wise loss is effective.

4.4 Ensemble Loss for Model Training
The above theorems guarantee our proposed ranking ensemble

learning method in theory for three representative loss functions.

With EA decomposition theory, we prove that the loss of ensemble

list is smaller than any weighted sum combination of losses of basic

lists: 𝑙𝑒𝑛𝑠 (𝜋, 𝑆𝑒𝑛𝑠 ) ≤
∑
𝑘 𝑤𝑘𝑙𝑘 (𝜋, 𝑆𝑘 )−𝐴+Δ,∀𝑤𝑘 ≤ 0,

∑𝐾
𝑘=1

𝑤𝑘 = 1,

where 𝐴 is a positive ambiguity term, and Δ is arbitrarily small.

Therefore, the ensemble loss 𝑙𝑒𝑛𝑠 (𝜋, 𝑆𝑒𝑛𝑠 ) (i.e., differences between
ensemble list and ground truth) is possible to be smaller than any

basic list loss with suitable weights {𝑤𝑘𝑛 }, and larger ambiguity

𝐴 will lead to a smaller bound of ensemble loss. Thus, it can be

effective for our ranking ensemble task.

In practice, since basic lists are fixed (so 𝑙𝑘 (𝜋, 𝑆𝑘 ) are constants),
we aim to minimize the ensemble ranking loss 𝑙𝑒𝑛𝑠 (𝜋, 𝑆𝑒𝑛𝑠 ) and
maximize the ambiguity 𝐴. Therefore, the loss function for ranking

ensemble learning, 𝑙𝑒𝑙 , is defined as follows,

𝑙𝑒𝑙 = 𝑙𝑒𝑛𝑠 (𝜋, S𝑒𝑛𝑠 ) − 𝛼𝐴 (24)

where 𝑙𝑒𝑛𝑠 (𝜋, S𝑒𝑛𝑠 ) can be any of the 𝑙𝑚 (𝜋, S𝑒𝑛𝑠 ), 𝑙𝑏 (𝜋, S𝑒𝑛𝑠 ), and
𝑙𝑝−𝑙 (𝜋, S𝑒𝑛𝑠 ), and 𝐴 indicates the ambiguity term. For BPR and P-L

loss, there exists an interpolation 𝑆𝑒𝑛𝑠𝑛 = 𝑆𝑒𝑛𝑠𝑛 + 𝜃 (𝑆𝑘𝑛 − 𝑆𝑒𝑛𝑠𝑛 ) in 𝐴.
To simplify the calculation, we let 𝜃 → 0without loss of generality.
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Figure 2: Overall framework of the Intent-aware Ranking
Ensemble Learning (IntEL) model, where 𝑙𝑒𝑛𝑠 and 𝑙𝑟𝑒𝑐 are
generated by Eq.24 and Eq.29, respectively.

5 INTENT-AWARE RANKING ENSEMBLE
METHOD

5.1 Overall Framework
After we proved the effectiveness of item-level weights {𝑤𝑘𝑛 } for
ranking ensemble with three different loss functions, we need to

design a neural network for learning the weights 𝑤𝑘𝑛 . As shown

in Section 3.2, users’ intents about behaviors and item categories

help aggregate the basic lists, while intents are not available in

advance. Therefore, an intent predictor and an intent-aware ranking

ensemble module are designed for our method.

The main framework of our Intent-aware Ensemble Learning (In-

tEL) method is shown in Figure 2. For a user𝑢 at time𝑇 , user intents

𝐼𝑛𝑡 are predicted with an intent predictor from her historical inter-

actions and current environment context. Then, with 𝑁 candidate

items generated from 𝐾 basic models, an intent-aware ranking

ensemble module is adopted to integrate basic list scores, item cat-

egories, and the predicted user intents. The output of the ensemble

module is item-level weights {𝑤𝑘𝑛 } for each item 𝑛 and basic model

𝑘 . Eventually, weighted sum of all basic list scores constructs the en-

semble scores {𝑆𝑒𝑛𝑠
𝑘

} for a final list. Since we focus on the ranking

ensemble learning problem, a straight-forward sequential model is

used for intent prediction in Section 5.2, and we pay more attention

to the design of ensemble module in Section 5.3. IntEL is optimized

with a combination of ranking loss 𝑙𝑒𝑛𝑠 (𝜋, 𝑆), ambiguity loss𝐴, and

intent prediction loss 𝑙𝑖𝑛𝑡 . Details about the model learning strategy

will be discussed in Section 5.4.

5.2 User Intent Predictor
As defined in Section 3.2, user intent describes a multi-dimensional

probability distribution 𝐼𝑛𝑡 over different item categories and behav-

iors at each user visit. The goal of the intent predictor is to generate

an intent probability distribution for each user visit. We predict
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Figure 3: Structure of the intent-aware ranking ensemble
module.

intents with users’ historical interactions and environment context,

as both historical habits and current situations will influence users’

intents.

For a user 𝑢 at time 𝑇 , her historical interactions from 𝑇 − 𝑡 to
𝑇 −1 and environment context (such as timestamp and location) at𝑇

are adopted to predict her intent at𝑇 , where 𝑡 is a pre-defined time

window. Enviroment context is encoded into embedding 𝑐 (𝑢,𝑇 )
with a linear context encoder. Two sequential encoders are utilized

to model historical interactions at user visit (i.e., session) level and

item level. Session-level history helps learn users’ habits about past

intents, while item-level interactions express preferences about item

categories in detail. At the session level, the intents and context

of each historical session are embedded with two linear encoders,

respectively. Then two embeddings are concatenated and encoded

with a sequential encoder to form an embedding ℎ𝑠 (𝑢,𝑇 ). At the
item level, “intent” of each positive historical interaction can also be

represented by its behavior type and item category. Then item-level

“intent”s are embedded with the same intent encoder as session-

level, and fed into a sequential encoder to form item-level history

ℎ𝑖 (𝑢,𝑇 ). The sequential encoder can be any sequential model, such

as GRU [12], transformer [37], etc. Finally, context 𝑐 (𝑢,𝑇 ), session-
level ℎ𝑠 (𝑢,𝑇 ), and item-level ℎ𝑖 (𝑢,𝑇 ) are concated for a linear layer
to predict intent ˆ𝐼𝑛𝑡 (𝑢,𝑇 ) (𝑢 and 𝑇 are omitted),

ˆ𝐼𝑛𝑡 = Softmax(W𝐼 [𝑐, ℎ𝑠 , ℎ𝑖 ] + 𝑏𝐼 ) (25)

WhereW𝐼
and 𝑏𝐼 are linear mapping parameters.

5.3 Design of Ensemble Module
The structure of the intent-aware ranking ensemble module is

shown in Figure 3(a). Since the final weights {𝑤𝑘𝑛 } should be learned
from both behavior and item categories aware of user intents, the

predicted intents, single-behavior-objective basic list scores, and

categories of items in basic lists are adopted as inputs.

Firstly, lists of item scores {𝑆𝑘𝑛 |𝑘 ∈ {1, 2, ..., 𝐾}, 𝑛 ∈ {1, 2, ..., 𝑁 }}
are fed into a self-attention layer to represent the relationship

among item scores in the same basic list. Item categories {𝐼𝑛 |𝑛 ∈
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{1, 2, ..., 𝑁 }} are also encoded with a self-attention layer to capture

the intra-list category distributions. The self-attention structure

consists of a linear layer to embed scores {𝑆𝑘𝑛 } (or categories {𝐼𝑛})
into 𝑑𝑒 -dimensional representations S ∈ R𝑁×𝑑𝑒

(or I ∈ R𝑁×𝑑𝑒
) and

𝑇 layers of multi-head attentions, which follow the cross-relation

attention layer proposed byWang et al. [40], as shown in Figure 3(b).

Secondly, user intent 𝐼𝑛𝑡 is embedded into 𝑑𝑖𝑛𝑡 dimension with

a linear projection 𝐼𝑛𝑡𝑑 = W𝑖 𝐼𝑛𝑡 ∈ R𝑁×𝑑𝑖𝑛𝑡
. Then the influences of

user intent on representations of scores and features are obtained

with cross-attention layers,

A𝑠 = Attention(𝑄 = W𝑄 𝐼𝑛𝑡𝑑 , 𝐾 = S,𝑉 = S) (26)

A𝑖 = Attention(𝑄 = W𝑄 𝐼𝑛𝑡𝑑 , 𝐾 = I,𝑉 = I) (27)

Where the projection matrix W𝑄 ∈ R𝑑𝑒×𝑑𝑖𝑛𝑡 is shared between

two intent-aware attention modules. Since behavior intents and

category intents are associated when users interact with recom-

menders, we use the holistic user intents to guide the aggregations

of both basic list scores and item categories rather than splitting

the intents into two parts.

Finally, weights {𝑤𝑘𝑛 } should be generated from all information.

Intent-aware score embeddings A𝑠 , intent-aware item category

embeddings A𝑖 , and intent embedding 𝐼𝑛𝑡𝑑 are concatenated and

projected into space of R𝐾 to get the weight matrixW ∈ R𝑁×𝐾
,

W = W𝑤 · ( [A𝑠 ,A𝑖 , 𝐼𝑛𝑡𝑑 ]) (28)

Where W𝑤 ∈ R𝐾×(2𝑑𝑒+𝑑𝑖𝑛𝑡 ) is a trainable projection matrix. The

output matrix W = {𝑤𝑘𝑛 } is used as the weights for summing basic

model scores as in Eq. 1.

5.4 Model Learning Strategy
Since an end-to-end framework is to train the intent predictor

module and intent-aware ranking ensemble module, joint learning

of two modules is utilized for model optimization.

To optimize ranking ensemble results according to theorems via

EA decomposition in Section 4, ensemble learning loss 𝑙𝑒𝑙 consists

of 𝑙𝑒𝑛𝑠 (𝜋, S𝑒𝑛𝑠 ) and 𝐴 as in Eq.24. Meanwhile, accurate user intents

will guide the ranking ensemble, so an intent prediction loss is also

used for model training. Since user intents are described by multi-

dimensional distributions, KL-divergence [13] loss 𝑙𝑖𝑛𝑡 is adopted

to measure the distance between true intents 𝐼𝑛𝑡 and predicted

intents ˆ𝐼𝑛𝑡 . The final recommendation loss 𝑙𝑟𝑒𝑐 is a weighted sum

𝑙𝑟𝑒𝑐 = 𝑙𝑒𝑙 + 𝛾𝑙𝑖𝑛𝑡 = 𝑙𝑒𝑛𝑠 (𝜋, S𝑒𝑛𝑠 ) − 𝛼𝐴 + 𝛾𝑙𝑖𝑛𝑡 (29)

Where 𝑙𝑒𝑛𝑠 (𝜋, S𝑒𝑛𝑠 ) is the ranking ensemble loss, 𝐴 is the ambigu-

ity term, and 𝑙𝑖𝑛𝑡 is the intent prediction loss. 𝛼 and 𝛾 are hyper-

parameters to adjust the weights of ambiguity and intent loss, re-

spectively.

6 EXPERIMENTS
6.1 Experimental Setup
6.1.1 Dataset. Experiments are conducted on a public online shop-

ping recommendation datasetTmall2 and a private local life service
recommendation dataset LifeData.

2
https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

Table 2: Datasets statistics in ranking ensemble experi-
ments.

Dataset #Item #User #Click #Buy #Fav. #Session

Tmall 142.5k 148.4k 2.439m 185.5k 271.9k 743.3k

LifeData 165.5k 82.7k 819.4k 82.5k - 559.2k

Tmall is a multi-behavior dataset from the IJCAI-15 competition,

which contains half-year user logs with Click, Add-to-favorite (Fav.),

and Buy interactions on Tmall online shopping platform. We em-

ploy the data in September for ensemble learning and exclude items

and users with less than 3 positive interactions. Following the data

processing strategy by Shen et al. [36], we treat a user’s interac-

tions within a day as a session. Three-week interactions before the

ensemble dataset are used for the generation of basic-model scores,

which will be discussed in Section 6.1.2.

LifeData comes from a local life service App, where the recom-

mender provides users with nearby businesses such as restaurants

or hotels. Users may click or buy items on the platform. One-month

interactions of a group of anonymous users are sampled, and users

and items with less than 3 positive interactions are filtered. A user’s

each visit (i.e., entering the App) is defined as a session, and sessions

with positive interactions are retained.

Basic models are optimized for each of the behaviors, which will

be introduced in Section 6.1.2. Ranking ensemble is conducted at

session level, and interactions in most 𝑡 = 20 historical sessions

are considered in the intent predictor. Detailed statistics are shown

in Table 2, which includes the dataset for ensemble learning only

while excluding the data used for basic model generation. More-

over, training data for basic models have no overlap with ensemble

learning data.

6.1.2 Basic-model Score and Intent Generation. In IntEL, basic

scores are pre-generated and fixed during ranking ensemble. For

Tmall, we adopted DeepFM [20] as basic models to train three

models with Click, Fav., and Buy objectives separately. In each ses-

sion, we select the top 30 items predicted by each basic model to

construct three item sets, and take the union of them, plus positive

interactions of the session, to form the basic item lists for rerank-

ing. Please refer to our public repository for details about basic

model training strategy
3
. For LifeData, two basic score lists are

used for ranking ensemble, which are sorted by predicted click-

ing probability and buying probability provided by the platform,

respectively.

As for intents, in Tmall, |𝐵 | = 3, and we merge categories with

less than 50 items, resulting in category |𝐼 | = 357. In LifeData,
|𝐼 | = 6 and |𝐵 | = 2. Hence, the dimension for intent 𝐼𝑛𝑡 is 1071 for

Tmall and 12 for LifeData. Intent ground truth 𝐼𝑛𝑡 probability is

calculated from all positive interactions in each session.

6.1.3 Baseline Methods. We compare IntEL against basic models

and several ranking ensemble baselines as follows,

1. Single 𝑋𝑋𝑋 : Use one of the basic models’ scores to rank the

item list. 𝑋𝑋𝑋 indicates Click, Fav., and Buy, respectively.

2. RRA [21]: An unsupervised ensemble method, where items

are sorted with their significance in basic-model lists.

3. Borda [5]: An unsupervised ensemble method to take the

average ranks of all basic models as the final ranking.



SIGIR ’23, July 23–27, 2023, Taipei, Taiwan. Jiayu Li, Peijie Sun, Zhefan Wang, Weizhi Ma, Yangkun Li, Min Zhang, Zhoutian Feng, and Daiyue Xue

Table 3: Main differences between two datasets. Pos. indi-
cates positive interactions.

Dataset #Intent Avg. Session Length Avg. Pos./Session

Tmall 1,071 68.37 3.73

LifeData 12 32.78 1.47

4. 𝜆Rank [7]: A gradient-based optimization method used for

learning2rank task. We regard items as documents, basic-model

scores and item categories as document features, and MLP as a

backbone model.

5. ERA [30]: An evolutionary method to aggregate some basic-

list features with Genetic Algorithm (GA), where fitness function

is calculated on validation set.

6. aWELv [24]: A personalized ranking ensemble method to

assign weights at basic model level, i.e.,𝑤𝑘𝑛 = 𝑤𝑘𝑚 for any 𝑛,𝑚. We

adopt the list-wise training loss following [24].

7. aWELv+Int/IntEL: Two variations of aWELv considering

user intents. Intents are predicted as a feature for aWELv+Int. The

IntELmodule is used for predicting list-level weights for aWELv+IntEL.

Our methods are shown as IntEL-MSE, IntEL-BPR, and IntEL-
PL with three different kinds of loss functions.

6.1.4 Experimental settings. We split both datasets along time:

the last week is the test set, and the last three days from the

training set is the validation set. The priority for the mutli-level

ground truth 𝜋 are Buy>Favorite>Click>Examine for Tmall, and
Buy>Click>Examine for LifeData. As for evaluation, we adopt

NDCG@3, 5, and 10 to evaluate the ensemble list 𝑆𝑒𝑛𝑠 on the multi-

level ground truth 𝜋 (i.e., all) and each behavior objective.

We implement IntEL model in PyTorch, and the code of IntEL

and all baselines are released
3
. Each experiment is repeated with 5

different random seeds and average results are reported. All models

are trained with Adam until convergence with a maximum of 100

epochs. For a fair comparison, the batch size is set to 512 for all

models. We tuned the parameters of all methods over the validation

set, where the learning rate are tuned in the range of [1𝑒 − 4, 1𝑒 − 2]
and all embedding size are tuned in {16, 32, 64}. Specifically, for
IntEL, we found that it has stable performance when GRU [12] with

embedding=128 is used for the intent predictor, and self-attention

with 𝑇 = 2 for Tmall and 𝑇 = 1 for LifeData. The ambiguity loss

weight 𝛼 is set to 1e-5, 1e-5, and 1e-4 for IntEL-MSE, IntEL-BPR,

and IntEL-PL. Hyper-parameter details are released
3
.

6.2 Overall Performance
The overall performances on Tmall and LifeData are shown in

Table 4 and Table 5, respectively. We divide all models into four

parts: The first part evaluates on each single-objective basic model’s

scores. The second is unpersonalized baseline ensemble models, and

the third contains personalized baselines: aWELv and its two vari-

ants with user intents. The last part shows our method IntEL with

three loss functions. From the results, we have several observations:

First, our proposed IntEL achieves the best performance on all

behavior objectives in both datasets. IntEL with three loss functions,

i.e., IntEL-MSE, IntEL-BPR, and IntEL-PL, outperform the best base-

lines on most metrics significantly. Although the two datasets are

3
https://github.com/JiayuLi-997/IntEL-SIGIR2023.
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Figure 4: Ablation study. Performance comparison between
IntEL and its variant, i.e., without: Intent modeling (-Int),
item categories (-I), basic score lists (-S), cross-attention (-
Cross), and self-attention (-Self).

quite different, as shown in Table 3, IntEL has stable, great ensemble

results on both datasets.

Second, IntEL with different loss functions show different per-

formances on two datasets. On Tmall, IntEL-MSE is better than

IntEL-BPR and IntEL-PL. It is because there is four-level ground

truth 𝜋 (three behaviors), and ranking on such diverse item lists

is close to rating prediction. Therefore, IntEL-MSE, which directly

optimizes the ensemble scores, performs better than IntEL-BPR and

IntEL-PL, which optimize the comparison between rankings. On

LifeData, IntEL-PL and IntEL-BPR perform better since LifeData

has shorter sessions with fewer positive interactions (as in Table 3).

So comparison-based BPR and P-L achieve better performance.

Third, comparing different baselines, we find that supervised

methods (𝜆Rank, ERA, and aWELv) outperform unsupervised RRA

and Borda greatly on Tmall. It is because heterogeneous single-

behavior objective models (Single XXX) have diverse performance,

making rank aggregation difficult for unsupervised methods.

Lastly, aWELv and its variants perform well on LifeData but

not on Tmall since session lists are generally longer (Table 3) for

Tmall, and list-level weights of aWELv miss useful intra-list infor-

mation. So item-level weights that consider item category intents

are necessary. Nevertheless, aWELv is better than basic models

in both datasets, which is consistent with the theory. Moreover,

aWELv+Int/IntEL outperform aWELv on most metrics, indicating

that user intents contributes to ranking ensemble learning.

6.3 Further Analysis
To further explore the performance of our ranking ensemble learn-

ing method, we conduct an ablation study, analysis of user intents,

and hyper-parameters analysis on the best model for each dataset,

i.e., IntEL-MSE for Tmall and IntEL-PL for LifeData.

6.3.1 Ablation Study. The main contributions of our proposed

IntEL include adopting user intents for heterogeneous ranking

ensemble and integration of basic-list scores, item categories, and

user intents. We compare IntEL with five variants: Excluding one

of the inputs: -Int (without intent), -I (without item categories),

and -S (without basic-list scores). Replacing two main elements:

-Cross, removing the intent-aware cross-attention layer; and -Self,
replacing the self-attention layer with a direct connection.

NDCG@3 on the general multi-level ranking list of variants and

IntEL are shown in Figure 4. Ranking performance drops on all

five variants, indicating all inputs and two attention layers con-

tribute to the performance improvement of IntEL. Removing scores
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Table 4: Results of IntEL with three different loss functions and baseline methods on Tmall. Boldface shows the best result.
Underline indicates the best baseline. Notation **/* demonstrates significantly better than the best baseline with p<0.05/0.01.

All-NDCG@K Click-NDCG@K Fav.-NDCG@K Buy-NDCG@K

Model

K=3 K=5 K=10 K=3 K=5 K=10 K=3 K=5 K=10 K=3 K=5 K=10

Single Click 0.1356 0.1473 0.1673 0.1435 0.1532 0.1721 0.0701 0.0829 0.1014 0.0918 0.1057 0.1243

Single Fav. 0.0752 0.0874 0.1066 0.0779 0.0894 0.1083 0.0630 0.0748 0.0920 0.0492 0.0607 0.0765

Single Buy 0.0572 0.0689 0.087 0.0587 0.0699 0.0878 0.0393 0.0489 0.0638 0.0632 0.0776 0.0974

RRA 0.0960 0.1093 0.1317 0.0998 0.1120 0.1341 0.0683 0.0813 0.1014 0.0753 0.0907 0.1122

Borda 0.1258 0.1398 0.1626 0.1317 0.1440 0.1660 0.0741 0.0880 0.1081 0.0830 0.0989 0.1218

𝜆Rank 0.2742 0.2797 0.3003 0.3104 0.3064 0.3189 0.1878 0.2122 0.2472 0.1376 0.1586 0.1913

ERA 0.3325 0.3378 0.3623 0.2301 0.2420 0.2716 0.1933 0.2156 0.2502 0.1921 0.2163 0.2504

aWELv 0.1387 0.1533 0.1770 0.1469 0.1584 0.1811 0.0837 0.0986 0.1197 0.1025 0.1198 0.1436

aWELv+Int 0.1398 0.1574 0.1784 0.1484 0.1592 0.1822 0.0903 0.1016 0.1183 0.1030 0.1259 0.1445

aWELv+IntEL 0.1427 0.1556 0.1774 0.1535 0.1620 0.1821 0.0906 0.0934 0.1120 0.1042 0.1263 0.1451

IntEL-MSE 0.4257** 0.4364** 0.4676** 0.4693** 0.4680** 0.4712** 0.2943** 0.3271** 0.3731** 0.2433* 0.2760** 0.3100**
IntEL-BPR 0.3992* 0.3859* 0.3755 0.4417** 0.4157** 0.3960* 0.2791** 0.2943** 0.3068* 0.2344* 0.2508* 0.2630

IntEL-PL 0.4041** 0.3865* 0.3678 0.4367** 0.4060** 0.3829** 0.2811** 0.2934** 0.3032* 0.2355* 0.2472* 0.2594

Table 5: Results of IntEL with three different loss functions and baseline methods on LifeData. Boldface shows the best result.
Underline indicates the best baseline. Notation **/* demonstrates significantly better than the best baseline with p<0.05/0.01.

All-NDCG@K Click-NDCG@K Buy-NDCG@K

Model

K=3 K=5 K=10 K=3 K=5 K=10 K=3 K=5 K=10

Single Click 0.4004 0.4443 0.4972 0.4009 0.4449 0.4980 0.6365 0.6665 0.6918

Single Buy 0.3102 0.3526 0.4070 0.3102 0.3528 0.4072 0.6893 0.7211 0.7438

RRA 0.3539 0.4020 0.4586 0.3540 0.4022 0.4590 0.6556 0.6865 0.7104

Borda 0.4094 0.4538 0.5061 0.4097 0.4541 0.5066 0.7030 0.7250 0.7447

𝜆Rank 0.4129 0.4487 0.4830 0.4133 0.4492 0.4835 0.6866 0.7083 0.7225

ERA 0.4063 0.4451 0.5053 0.4181 0.4579 0.5112 0.5782 0.6307 0.6764

aWELv 0.4074 0.4531 0.5033 0.4077 0.4535 0.5041 0.7063 0.7339 0.7466

aWELv+Int 0.4150 0.4607 0.5143 0.4151 0.4610 0.5147 0.6962 0.7271 0.7482

aWELv+IntEL 0.4174 0.4663 0.5176 0.4189 0.4638 0.5171 0.7036 0.7318 0.7503

IntEL-MSE 0.4253** 0.4695* 0.5211** 0.4257** 0.4700** 0.5217* 0.7096 0.7379 0.7498

IntEL-BPR 0.4308** 0.4752** 0.5268** 0.4312** 0.4757** 0.5275** 0.7115* 0.7390* 0.7609**
IntEL-PL 0.4378** 0.4819** 0.5332** 0.4382** 0.4825** 0.5339** 0.7093 0.7382* 0.7604**

Table 6: Intent prediction and ranking ensemble perfor-
mance comparison with different treatments on user in-
tents.

Dataset Tmall LifeData

Model -Int His.Avg. IntEL -Int His.Avg. IntEL

I-Perform - 0.1829 0.2347 - 0.2663 0.3298

E-NDCG@3 0.3913 0.4011 0.4257 0.4123 0.4265 0.4378

and the self-attention layer both lead to considerable performance

decreases on Tmall, showing that intra-list basic scores informa-

tion is eseential, as long sessions are included in Tmall. Removing

user intents leads to the most dramatic degradation on LifeData,

which suggests it is important to adopt user intents for the multiple-

objective ranking ensemble. Nevertheless, the ablation variants still

outperform all basic lists (i.e., Single XXX), which aligns with our

proof of loss reduction via EA ambiguity decomposition.

6.3.2 Influence of User Intent. Since intents are essential for rank-
ing ensemble learning, we explore the influence of intent prediction

accuracy. Therefore, we compare IntEL with two variants: -Int, In-
tEL without user intents as input, andHis.Avg., predicting a user’s
current intents as her average historical session intents.

Since Tmall has 1071 intents and LifeData has 12 intents, we
utilize NDCG@10 and Macro-F1 as intent performance (I-perform)

indicators, respectively. And ensemble results (E-NDCG@3) are

evaluated by All-NDCG@3 for both datasets. The results are shown

in Table 6. It indicates that better performance of ranking ensemble

is achieved by adding intent prediction and improving prediction

accuracy. Therefore, predicting user intents is helpful for ranking

ensemble in recommendation. On the other, 𝐻𝑖𝑠.𝐴𝑣𝑔. works bet-

ter than all baselines, providing an efficient and effective possible

implementation in application.

6.3.3 Hyper-parameters Analysis. Since the construction of loss

𝑙𝑟𝑒𝑐 (Eq.29) is essential for our method, we analyze the influence of

hyper-parameters duringmodel optimization. Two hyper-parameters

are considered in the optimization loss 𝑙𝑟𝑒𝑐 : 𝛼 , the weight for ba-

sic list ambiguity 𝐴; 𝛾 , the weight for intent prediction loss 𝑙𝑖𝑛𝑡 .

All-NDCG@3 with different hyper-parameters on two datasets are
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Figure 5: Ranking ensemble results of IntEL with different
hyper-parameters.

shown in Figure 5. It illustrates that too large or small 𝛼 will both

lead to ranking ensemble performance decrease. Especially when

𝛼 is too large, the model will focus on maximizing basic model

ambiguity 𝐴 to minimize 𝑙𝑟𝑒𝑐 , while ensemble learning loss 𝑙𝑒𝑙 is

less optimized. As for the intent loss weight 𝛾 , performance on

Tmall shows fluctuation with 𝛾 , while performance on LifeData is

relatively stable. It is because intent prediction difficulty differs on

two datasets: Tmall contains 1071 types of intents, which is hard

to predict accurately, so a proper intent loss weight is essential for

predictor optimization, while LifeData has only 12 intents, which

is easier to capture and model.

7 CONCLUSION
In this paper, we propose a novel ranking ensemble method IntEL

for intent-aware single-objective ranking lists aggregation. To our

knowledge, we are the first to generalize ranking ensemble learning

with item-level weights on heterogeneous item lists. And we are

also the first to integrate user intents into rank aggregation in

recommendation. We generalize the ranking ensemble with item-

level weights and prove its effectiveness with three representative

loss functions via error-ambiguity decomposition theory. Based

on the proof, we design an ensemble learning loss 𝑙𝑒𝑙 to minimize

ranking ensemble loss 𝑙𝑒𝑛𝑠 and maximize ambiguity 𝐴. Then we

design an intent-aware ranking ensemble learning model, IntEL,

to learn weights for heterogeneous lists’ ensemble. In IntEL, a

sequential intent predictor and a two-layer attention intent-aware

ensemble module are adopted for learning the personalized and

adaptive ensemble weights with user intents. Experiments on two

large-scale datasets show that IntEL gains significant improvements

on multiple optimization objectives simultaneously.

This study still has some limitations. For basic list generation,

we only applied one classical method, DeepFM, for different behav-

iors separately. However, multi-behavior methods are also possible

models to generate multiple basic lists simultaneously, which may

lead to different performance for IntEL. Also, a straight-forward

method was adopted to predict intents and incorporate intent pre-

diction loss. In the future, we will investigate the possibility of

integrating more heterogeneous basic lists for other objectives in

recommendation with IntEL. As we find that more accurate user

intents will lead to better ranking ensemble performance, we will

also try to design more sophisticated intent predictors to achieve

better results.
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